scholarly journals EFFECTS OF HEAT SOURCE, CHEMICAL REACTION, THERMAL DIFFUSION AND MAGNETIC FIELD ON DEMIXING OF A BINARY FLUID MIXTURE FLOWING OVER A STRETCHED SURFACE

2014 ◽  
Vol 44 (4) ◽  
pp. 339-343
Author(s):  
B. R. SHARMA ◽  
K. NATH

Effects of viscous dissipation, heat source, thermal diffusion and chemical reaction on demixing of a binary mixture of incompressible viscous electrically conducting fluids in two dimensional magnetohydrodynamic boundary layer flow on a vertical stretching surface are investigated. The momentum, energy and concentration equations are reduced to non-linear coupled ordinary differential equations by similarity transformations and are solved numerically by using MATLAB’s built in solver bvp4c. These numerical results are exhibited graphically from which it has been found that the effects of various parameters are to separate the components of the binary mixture by collecting the lighter and rarer component near the plate and throwing the heavier one away from it.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
S. Mohammed Ibrahim

The steady two-dimensional radiative MHD boundary layer flow of an incompressible, viscous, electrically conducting fluid caused by a nonisothermal linearly stretching sheet placed at the bottom of fluid saturated porous medium in the presence of viscous dissipation and chemical reaction is studied. The governing system of partial differential equations is converted to ordinary differential equations by using the similarity transformations, which are then solved by shooting method. The dimensionless velocity, temperature, and concentration are computed for different thermophysical parameters, namely, the magnetic parameter, permeability parameter, radiation parameter, wall temperature parameter, Prandtl number, Eckert number, Schmidt number, and chemical reaction.


2019 ◽  
Vol 15 (4) ◽  
pp. 585-592
Author(s):  
Kamatam Govardhan ◽  
Ganji Narender ◽  
Gobburu Sreedhar Sarma

A numerical analysis was performed for the mathematical model of boundary layer flow of Casson nanofluids. Heat and mass transfer were analyzed for an incompressible electrically conducting fluid with viscous dissipations and chemical reaction past a stretching sheet. An appropriate set of similarity transformations were used to transform the governing partial differential equations (PDEs) into a system of nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is solved numerically by using shooting method. A detailed discussion on the effects of various physical parameters and heat transfer characteristics was also included.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
R. A. Hamid ◽  
W. M. K. A. Wan Zaimi ◽  
N. M. Arifin ◽  
N. A. A. Bakar ◽  
B. Bidin

The problem of thermal diffusion and diffusion thermo effects on thermosolutal Marangoni convection flow of an electrically conducting fluid over a permeable surface is investigated. Using appropriate similarity transformations, the governing system of partial differential equation is transformed to a set of nonlinear ordinary differential equations, then solved numerically using the Runge-Kutta-Fehlberg method. The effects of thermal diffusion and diffusion thermo, magnetic field parameter, thermosolutal surface tension ratio, and suction/injection parameter on the flow field, heat transfer characteristic, and concentration are thoroughly examined. Numerical results are obtained for temperature and concentration profiles as well as the local Nusselt and Sherwood numbers are presented graphically and analyzed. It is found that these governing parameters affect the variations of the temperature and concentration and also the local Nusselt and Sherwood numbers.


2017 ◽  
Vol 11 ◽  
pp. 22-32 ◽  
Author(s):  
K. Ganesh Kumar ◽  
Bijjanal Jayanna Gireesha ◽  
B.C. Prasannakumara ◽  
Oluwole Daniel Makinde

This paper explore the Marangoni boundary layer flow in a Casson nano liquid over a stretching sheet. The effect of chemical reaction and uniform heat source/sink are taken into the account. The standard nonlinear system is resolved numerically via Runge-Kutta based shooting scheme. Role of substantial parameters on flow fields as well as on heat and mass transportation rates are determined and conferred in depth through graphs.From the investigation it reveals that, the Marangoni number plays a connecting role between the velocity and temperature gradients on the boundary surface. Further,the higher values of Lewis number and chemical reaction parameter reduces the solutal thermal boundary layer thickness decreases.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Odelu Ojjela ◽  
N. Naresh Kumar

This paper presents an incompressible two-dimensional heat and mass transfer of an electrically conducting micropolar fluid flow in a porous medium between two parallel plates with chemical reaction, Hall and ion slip effects. Let there be periodic injection or suction at the lower and upper plates and the nonuniform temperature and concentration at the plates are varying periodically with time. The flow field equations are reduced to nonlinear ordinary differential equations using similarity transformations and then solved numerically by quasilinearization technique. The profiles of velocity components, microrotation, temperature distribution and concentration are studied for different values of fluid and geometric parameters such as Hartmann number, Hall and ion slip parameters, inverse Darcy parameter, Prandtl number, Schmidt number, and chemical reaction rate and shown in the form of graphs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Priyanka Agrawal ◽  
Praveen Kumar Dadheech ◽  
R.N. Jat ◽  
Dumitru Baleanu ◽  
Sunil Dutt Purohit

Purpose The purpose of this paper is to study the comparative analysis between three hybrid nanofluids flow past a permeable stretching surface in a porous medium with thermal radiation. Uniform magnetic field is applied together with heat source and sink. Three set of different hybrid nanofluids with water as a base fluid having suspension of Copper-Aluminum Oxide (Cu−Al2O3), Silver-Aluminum Oxide (Ag−Al2O3) and Copper-Silver (Cu−Ag) nanoparticles are considered. The Marangoni boundary condition is applied. Design/methodology/approach The governing model of the flow is solved by Runga–Kutta fourth-order method with shooting technique, using appropriate similarity transformations. Temperature and velocity field are explained by the figures for many flow pertinent parameters. Findings Almost same behavior is observed for all the parameters presented in this analysis for the three set of hybrid nanofluids. For increased mass transfer wall parameter ( fw) and Prandtl Number (Pr), heat transfer rate cuts down for all three sets of hybrid nanofluids, and reverse effect is seen for radiation parameter (R), and heat source/sink parameter ( δ). Practical implications The thermal conductivity of hybrid nanofluids is much larger than the conventional fluids; thus, heat transfer efficiency can be improved with these fluids and its implications can be seen in the fields of biomedical, microelectronics, thin-film stretching, lubrication, refrigeration, etc. Originality/value The current analysis is to optimize heat transfer of three different radiative hybrid nanofluids ( Cu−Al2O3/H2O, Ag−Al2O3/H2O and Cu−Ag/H2O) over stretching surface after applying heat source/sink with Marangoni convection. To the best of the authors’ knowledge, this work is new and never published before.


2016 ◽  
Vol 13 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Narasu Siva Kumar ◽  
Rushi Kumar ◽  
A. G. Vijaya Kumar

The present study investigates an analytical solution of free convective unsteady fluid flow in presence of thermal diffusion and chemical reaction effects past a vertical porous plate with heat source dependent in slip flow regime. The plate is assumed to move with a constant velocity in the direction of fluid flow, while free stream velocity is assumed to follow exponentially increasing small perturbation law. The velocity, temperature and concentration profiles are presented graphically for different values of the parameters entering into the problem. Finally the effects of pertinent parameters on the skin friction coefficient, Nusselt number and Sherwood numbers distributions are derived and have shown through graphs and tables by using perturbation technique.


Sign in / Sign up

Export Citation Format

Share Document