scholarly journals An investigation into value of Eutrophication in Hosur Lakes

2021 ◽  
Vol 1 (4) ◽  
pp. 16-19

Abstract: Our current concern is that nitrogen and phosphorus amounts are rising rapidly, Otherwise, to limit the growth of algae and biomass, it exists in relatively low concentrations in unmodified natural waters. This investigation aims to attempt to measure the level of eutrophication in the Hosur LakesFor this research, we chose three lakes named Chandrakudi Lake, Doddan Lake and Kelavarapalli dam. For dissolved orthophosphate, chemical oxygen need, organic nitrogen, free ammonia, inorganic nitrogen whole phosphorus and soluble oxygen, etc. some exemplars were gathered and examined. The onsite research as transparence, facts on killing fish and deterioration of the lakes conditions, etc. was also accomplished. The eutrophication rate in the lakes was measured using the Wetzel's plan. The results showed that the rate of eutrophication was very high in all three lakes, i.e. more than enough to very rich in nutrients that cause excessive plant growth, which chokes out the animal life in the water.

2009 ◽  
Vol 60 (11) ◽  
pp. 1123 ◽  
Author(s):  
Jim Wallace ◽  
Lachlan Stewart ◽  
Aaron Hawdon ◽  
Rex Keen ◽  
Fazlul Karim ◽  
...  

Current estimates of sediment and nutrient loads from the Tully–Murray floodplain to the Great Barrier Reef lagoon are updated by taking explicit account of flood events. New estimates of flood discharge that include over-bank flows are combined with direct measurements of sediment and nutrient concentrations in flood waters to calculate the loads of sediment and nutrient delivered to the ocean during 13 floods that occurred between 2006 and 2008. Although absolute concentrations of sediment and nutrient were quite low, the large volume of water discharged during floods means that they make a large contribution (30–50%) to the marine load. By not accounting for flood flows correctly, previous estimates of the annual average discharge are 15% too low and annual loads of nitrogen and phosphorus are 47% and 32% too low respectively. However, because sediments may be source-limited, accounting for flood flows simply dilutes their concentration and the resulting annual average load is similar to that previously estimated. Flood waters also carry more dissolved organic nitrogen than dissolved inorganic nitrogen and this is the opposite of their concentrations in river water. Consequently, dissolved organic nitrogen loads to the ocean may be around twice those previously estimated from riverine data.


2017 ◽  
Vol 2 (4) ◽  
pp. 67-83 ◽  
Author(s):  
L. I. Ryabushko ◽  
N. V. Pospelova ◽  
D. S. Balycheva ◽  
N. P. Kovrigina ◽  
O. A. Troshchenko ◽  
...  

In mollusk cultivation areas large amount of biomass and metabolites is accumulated. For this reason, biological monitoring in the farming areas, which includes study of microalgae as environmental quality indicators, is of considerable importance. Samples of mussels harvested from collectors at 6 m depth over the period February 2015 – March 2016 have been utilized for studying epizoon microalgae residing on mollusk shells. At the same time, sea water at depths of 0 and 6 m was sampled for determining phytoplankton and hydrochemical parameters of environment in the mussel-and-oyster farm area. Dissolved oxygen, biological oxygen demand after five days of incubation in the dark (BOD5), alkaline permanganate oxidizability, silicates, organic and inorganic forms of nitrogen and phosphorus have been quantified in the water samples using conventional methods. In the epizoon of the mussel shells, 108 taxa of microalgae of four phyla have been identified: 3 species of Сyanoprokaryota, 6 of Dinophyta, 6 of Haptophyta and 93 of Bacillariophyta. The maximum values of the species richness (26) and abundance of microalgae were observed in February (74,78·103 cells·cm-2, t = 9,7 °C) and April 2015 (62,0·103 cells·cm-2, t = 10,3 °C), as well as in January 2016 (65,1·103 cells·cm-2, t = 9,5 °C). The highest biomass was registered in August (0,272 mg·cm-2, t = 25,5 °C). The main contribution to the total abundance was made by the diatoms Tabularia fasciculata while Navicula ramosissima, and cyanobacteria were prevalent in the total biomass. In phytoplankton at the depths of 0 and 6 m, 135 taxa belonging to eight phyla have been found: 2 species of Cyanoprokaryota, 47 of Acillariophyta, 57 of Inophyta, 17 of Haptophyta, 5 of Chlorophyta, 2 of Euglenophyta, 3 of Cryptophyta and 2 of Chrysophyta. The genus Chaetoceros dominated by the number of diatoms species (18). In terms of abundance and biomass, the dinoflagellate Prorocentrum micans and haptophyte Emiliania huxleyi were dominant. The maximum abundance (370·107 cells·m-3) and biomass (7560 mg·m-3) of the phytoplankton were observed in spring and autumn. In total, 213 of microalgae taxa have been identified in the phytoplankton and mussel shell epizoon, with 30 ones being common for both. Furthermore, 26 potentially toxic species and 24 indicator species have been determined, among which 26 ones are betamesosaprobionts, the indicators of moderate level of water pollution. Thermohaline characteristics of water in the mollusk farm area did not exceed those of the long-term observations. At all horizons, the oxygen content was at the level of 93–125 % of saturation. The sea water oxidizability did not exceed the maximum permissible level established by fishery standards. The concentration of nutrients was high with a large fluctuation range, which indicates anthropogenic impact on the water area. The values of the total inorganic nitrogen-to-phosphorus and silicon-to-phosphorus ratios suggested nitrogen and silicon limitations for the microalgae community development from July to December. The mussel epizoon microalgae abundance strongly correlated with water temperature and dissolved oxygen, and a strong correlation of the biomass with inorganic phosphorus was observed, too. Moderate correlations were also found with inorganic phosphorus and organic nitrogen. For the phytoplankton, moderate correlations of abundance with hydrological and hydrochemical characteristics were identified: with nitrates in the surface layer and with temperature, dissolved oxygen, and organic nitrogen in the subsurface water layer. The phytoplankton biomass moderately correlated with the silicate concentration. The hydrological and hydrochemical structure of sea water, especially in the mollusk farming areas, affected species composition and quantitative characteristics of planktonic and benthic microalgae communities.


2021 ◽  
Vol 3 (2) ◽  
pp. 120-129
Author(s):  
Florinela Pirvu ◽  
◽  
Iuliana Paun ◽  
Marcela Niculescu ◽  
Vasile Ion Iancu ◽  
...  

Water resources crisis can lead to a new concept of wastewater treatment. Wastewater cannot be considered waste but can be a renewable or non-renewable energy source. Nutrients from wastewater could be recycled and not disposed of. A circular economy can be created that can be based on the ability of algae to absorb and store nutrients: carbon (C), nitrogen (N) and phosphorus (P). This study investigates the stoichiometry between carbon, nitrogen and phosphorus in wastewater from three geographical regions of Romania. The concentrations of inorganic nitrogen, total nitrogen, total phosphorus, and total organic carbon were compared and evaluated. Three wastewater sampling points located in different areas were monitored, in the period 2013-2017 for the sampling point located in the central-northern part of the Romanian Plain and in the period 2015-2017 for the other two studied areas. The obtained results showed very high values of total nitrogen concentrations with values between 28.2 mg/L and 107.2 mg/L for the southeastern part of Romania. The values of the stoichiometric ratio’s C/N, C/P, N/P have varied over time with maximums in the autumn and winter seasons which indicates the existence of significant contamination of wastewater. It may be possible in the future to improve the performance of wastewater treatment by adjusting C, N, and P parameters.


2018 ◽  
Author(s):  
Valentina Valdés ◽  
François Carlotti ◽  
Ruben Escribano ◽  
Katty Donoso ◽  
Marc Pagano ◽  
...  

Abstract. Zooplankton play a key role in the regeneration of nitrogen and phosphorus in the ocean through grazing and metabolism. This study investigates the role of the organic and inorganic nitrogen and phosphorus compounds released by copepods on biogeochemical processes and on the microbial community composition during the OUTPACE cruise (18 February–3 April 2015) at three long duration stations (LD). Two LD stations were located in the Melanesian Archipelago region (MA; LD A and LD B) and one in the South Pacific Gyre (SG; LD C), which represent oligotrophic and ultraoligotrophic regions respectively. At each station, microcosm onboard experiments were performed with locally sampled organisms, comprising a mix of epipelagic copepods fed with their natural food and then incubated along with wild microbial assemblages. In presence of copepods, ammonium and dissolved organic nitrogen showed a significant increase, compared to a control in two situations: in ammonium concentration (increasing rate: 0.29 μmol L−1 h−1 after 4 h of incubation) in LD C and in dissolved organic nitrogen concentration (rate: 2.13 μmol L−1 h−1 after 0.5 h of incubation) in LD A. In addition, during the three experiments, an enhanced remineralization (ammonification and nitrification) was observed when adding copepods compared to the controls. A shift in the composition of active bacterial community was observed for the experiments in LD A and LD B mainly characterized by an increase in Alteromonadales and SAR11, respectively and linked with changes in nutrient concentrations. In the experiment performed in LD C, both groups increased but at different periods of incubation, Alteromonadales between 1 and 2 h after the beginning of the experiment, and SAR 11 at the end of incubation. Finally, our experimental results in near in situ conditions, show that copepods can be a source of organic and inorganic compounds for bacterial communities, which respond to excretion pulses at different scales, depending on the initial environmental conditions and on their community composition. These processes can contribute significantly to nutrient recycling in the epipelagic ecosystem of ultra and oligotrophic oceanic regions.


2018 ◽  
Vol 15 (20) ◽  
pp. 6019-6032 ◽  
Author(s):  
Valentina Valdés ◽  
François Carlotti ◽  
Ruben Escribano ◽  
Katty Donoso ◽  
Marc Pagano ◽  
...  

Abstract. Zooplankton play a key role in the regeneration of nitrogen and phosphorus in the ocean through grazing and metabolism. This study investigates the role of the organic and inorganic nitrogen and phosphorus compounds released by copepods on biogeochemical processes and on the microbial community composition during the OUTPACE cruise (18 February–3 April 2015) at three long-duration stations (LD). Two LD stations were located in the Melanesian Archipelago region (MA; LD A and LD B) and one in the South Pacific Gyre (SG; LD C), which represent oligotrophic and ultra-oligotrophic regions respectively. At each station, on-board microcosm experiments were performed with locally sampled organisms, comprising a mix of epipelagic copepods fed with their natural food and then incubated along with wild microbial assemblages. In the presence of copepods, ammonium and dissolved organic nitrogen showed a significant increase compared to a control in two situations: in ammonium concentration (rate: 0.29 µmol L−1 h−1 after 4 h of incubation) in LD C and in dissolved organic nitrogen concentration (rate: 2.13 µmol L−1 h−1 after 0.5 h of incubation) in LD A. In addition, during the three experiments, an enhanced remineralization (ammonification and nitrification) was observed when adding copepods compared to the controls. A shift in the composition of the active bacterial community was observed for the experiments in LD A and LD B, which were mainly characterized by an increase in Alteromonadales and SAR11, respectively, and linked with changes in nutrient concentrations. In the experiment performed in LD C, both groups increased but at different periods of incubation. Alteromonadales increased between 1 and 2 h after the beginning of the experiment, and SAR 11 at the end of incubation. Our results in near in situ conditions show that copepods can be a source of organic and inorganic compounds for bacterial communities, which respond to excretion pulses at different timescales, depending on the initial environmental conditions and on their community composition. These processes can significantly contribute to nutrient recycling and regenerated production in the photic zone of ultra-oligotrophic and oligotrophic oceanic regions.


1985 ◽  
Vol 42 (4) ◽  
pp. 649-658 ◽  
Author(s):  
J. G. Stockner ◽  
K. S. Shortreed

Seventeen warm monomictic coastal lakes in British Columbia were studied from 1980 to 1983. Inorganic nitrogen and phosphorus were applied to 13 of the lakes in some or all years of the study. In the untreated condition, lakes were ultraoligotrophic with low concentrations of nutrients (1.0–4.1 μg total P-L−1 at spring overturn), of average summer chlorophyll (0.49–2.57 μg∙L−1), and of average daily primary production (3.0–10.5 mg C∙m−3∙d−1). The lakes' oligotrophic condition is sustained by their low residence time (0.2–7.3 yr) and by low nutrient inputs from the generally steep granitic drainage basins. The lakes respond predictably to nitrogen and phosphorus additions and are generally phosphorus limited, as shown by the significant positive relationships between average summer chlorophyll and total phosphorus at spring overturn (r = 0.81) in unfertilized lakes, between average summer chlorophyll and phosphorus load from fertilizer (r2 = 0.62) in fertilized lakes, by the high average particulate C:N:P ratios (152:20:1), and by the high average TN:TP ratio (89).


2008 ◽  
Vol 59 (4) ◽  
Author(s):  
Gabriela Laura Almajan ◽  
Stefania Felicia Barbuceanu ◽  
Ioana Saramet ◽  
Mihaela Dinu ◽  
Cristian Vasile Doicin ◽  
...  

5-[4-(4X-phenylsulfonyl)phenyl]-1,3,4-oxadiazole-2-thiols, X=H, Cl, Br, reacted with ethyl chloroacetate to give S-alkylated compounds. Aminomethylation of the thione form of oxadiazoles yielded N(3)-derivatives. All the products have been characterized by elemental analysis, IR, 1H-NMR and 13C-NMR. The plant-growth regulating effects of the title compounds were examined. From the biological activity results, we found that most compounds showed weak stimulatory activities at low concentrations.


2021 ◽  
Vol 11 (11) ◽  
pp. 4995
Author(s):  
Marco Custódio ◽  
Paulo Cartaxana ◽  
Sebastián Villasante ◽  
Ricardo Calado ◽  
Ana Isabel Lillebø

Halophytes are salt-tolerant plants that can be used to extract dissolved inorganic nutrients from saline aquaculture effluents under a production framework commonly known as Integrated Multi-Trophic Aquaculture (IMTA). Halimione portulacoides (L.) Aellen (common name: sea purslane) is an edible saltmarsh halophyte traditionally consumed by humans living near coastal wetlands and is considered a promising extractive species for IMTA. To better understand its potential for IMTA applications, the present study investigates how artificial lighting and plant density affect its productivity and capacity to extract nitrogen and phosphorous in hydroponic conditions that mimic aquaculture effluents. Plant growth was unaffected by the type of artificial lighting employed—white fluorescent lights vs. blue-white LEDs—but LED systems were more energy-efficient, with a 17% reduction in light energy costs. Considering planting density, high-density units of 220 plants m−2 produced more biomass per unit of area (54.0–56.6 g m−2 day−1) than did low-density units (110 plants m−2; 34.4–37.1 g m−2 day−1) and extracted more dissolved inorganic nitrogen and phosphorus. Overall, H. portulacoides can be easily cultivated hydroponically using nutrient-rich saline effluents, where LEDs can be employed as an alternative to fluorescent lighting and high-density planting can promote higher yields and extraction efficiencies.


Sign in / Sign up

Export Citation Format

Share Document