scholarly journals Life Cycle Assessment of electricity generation from Jatropha oil in a short chain in Mali

Author(s):  
Leticia MENEGHEL FONSECA ◽  
Nawelle CHAOUKI ◽  
Anthony BENOIST ◽  
Guillaume BUSSET ◽  
Roland PIROT ◽  
...  

Jatropha curcas is an inedible oil crop which can grow under semiarid climatic conditions. Its oil can be used straight as fuel to provide energy in remote areas to improve living conditions. The aim of this study is to assess the environmental impacts of the electricity generation from Jatropha oil under West African conditions, by means of a Life Cycle Assessment (LCA). These potential impacts are calculated for four crop managements and compared to the ones of a reference electricity generation from conventional diesel. Data used in this work are from Jatropha plantations set up in Mali since 2006.LCA results show that the potential benefits of the Jatropha systems are highly dependent on the crop management, especially for the fertilization strategy and the promotion of the oilcake. However, in all cases, the Jatropha systems have lower impacts than the reference diesel system by 75% to 96% for abiotic depletion, and by 80% to 97% for ozone layer depletion, and higher impacts by 260% to 1000% for eutrophication, and by 26% to 160% for acidification. In the best case, the Jatropha system can also have lower impacts than the reference system by 76% for climate change, and by 88% for photochemical oxidation.A methodological originality of this work is the inclusion of animal and human labour into the LCA framework. A first model is proposed for the accounting of energy consumption and GreenHouse Gases (GHG) emissions due to labour. Concerning energy consumption, labour is not negligible with a share from 14% to 50% of the total impact of the Jatropha systems; however the highest share of 50% corresponds to the scenarios with the lowest energy demand. CH4 emissions from livestock are also not negligible but second-order in this study since they account for 2% to 13% of total GHG emissions.

Author(s):  
Frank Porras ◽  
Angel D. Ramirez ◽  
Arnaldo Walter ◽  
Guillermo Soriano

Abstract Cooling towers are widely used to remove heat in buildings with chilled water air conditioning systems. Moreira et al. [1] performed an experimental comparison between a cooling tower (CT) and a geothermal heat exchanger (GHE) in Guayaquil-Ecuador (hot/humid climate) and the results show an advantage of 39% of GHE systems regarding energy efficiency. This study compares the emissions of greenhouse gases (GHG), considering the results of the research mentioned above and comparing both systems. A life cycle assessment (LCA) approach was used to estimate the GHG emissions, assuming three scenarios for the electricity supply: the electricity generation mix in 2016, the planned electricity generation mix in 2025, and the profile for marginal electricity generation (peak demand). The estimated reduction of GHG emissions due to the use of GHE systems could be up to 50%. GHEs for building air conditioning applications is a technological option with potential to reduce energy consumption and GHG emissions. However, additional work is necessary to evaluate the complete environmental profile and its cost-effectiveness.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 834 ◽  
Author(s):  
Siqin Xiong ◽  
Junping Ji ◽  
Xiaoming Ma

Battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) are seen as the most promising alternatives to internal combustion vehicles, as a means to reduce the energy consumption and greenhouse gas (GHG) emissions in the transportation sector. To provide the basis for preferable decisions among these vehicle technologies, an environmental benefit evaluation should be conducted. Lithium iron phosphate (LFP) and lithium nickel manganese cobalt oxide (NMC) are two most often applied batteries to power these vehicles. Given this context, this study aims to compare life cycle energy consumption and GHG emissions of BEVs and PHEVs, both of which are powered by LFP and NMC batteries. Furthermore, sensitivity analyses are conducted, concerning electricity generation mix, lifetime mileage, utility factor, and battery recycling. BEVs are found to be less emission-intensive than PHEVs given the existing and near-future electricity generation mix in China, and the energy consumption and GHG emissions of a BEV are about 3.04% (NMC) to 9.57% (LFP) and 15.95% (NMC) to 26.32% (LFP) lower, respectively, than those of a PHEV.


2019 ◽  
Vol 8 (2) ◽  
pp. 113 ◽  
Author(s):  
Md. Mustafizur Rahman ◽  
Chowdhury Sadid Alam ◽  
TM Abir Ahsan

Life cycle assessment (LCA) is an extremely useful tool to assess the environmental impacts of a solar photovoltaic system throughout its entire life. This tool can help in making sustainable decisions. A solar PV system does not have any operational emissions as it is free from fossil fuel use during its operation. However, considerable amount of energy is used to manufacture and transport the components (e.g. PV panels, batteries, charge regulator, inverter, supporting structure, etc.) of the PV system. This study aims to perform a comprehensive and independent life cycle assessment of a 3.6 kWp solar photovoltaic system in Bangladesh. The primary energy consumption, resulting greenhouse gas (GHG) emissions (CH4, N2O, and CO2), and energy payback time (EPBT) were evaluated over the entire life cycle of the photovoltaic system. The batteries and the PV modules are the most GHG intensive components of the system. About 31.90% of the total energy is consumed to manufacture the poly-crystalline PV modules. The total life cycle energy use and resulting GHG emissions were found to be 76.27 MWhth and 0.17 kg-CO2eq/kWh, respectively. This study suggests that 5.34 years will be required to generate the equivalent amount of energy which is consumed over the entire life of the PV system considered. A sensitivity analysis was also carried out to see the impact of various input parameters on the life cycle result. The other popular electricity generation systems such as gas generator, diesel generator, wind, and Bangladeshi grid were compared with the PV system. The result shows that electricity generation by solar PV system is much more environmentally friendly than the fossil fuel-based electricity generation. ©2019. CBIORE-IJRED. All rights reserved


2011 ◽  
Vol 287-290 ◽  
pp. 1217-1220
Author(s):  
Ping Gong

The energy consumption of concrete is considered as the research object,and the life cycle theory is applied in the energy consumption analysis of concrete. the life cycle energy consumption inventory analysis of concrete is set up,the concrete’s whole life cycle is divided into four stage. Each stage’s energy consumption is carried out a detailed analysis. Based on the inventory analysis, an energy calculation model of concrete is established .


Buildings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Jeeyoung Park ◽  
Dirk Hengevoss ◽  
Stephen Wittkopf

Worldwide, an increasing number of new buildings have photovoltaics (PV) integrated in the building envelope. In Switzerland, the use of coloured PV façades has become popular due to improved visual acceptance. At the same time, life cycle assessment of buildings becomes increasingly important. While a life cycle inventory for conventional glass-film PV laminates is available, this is not the case for glass-glass laminates, and in particular, coloured front glasses. Only conventional glass-film PV laminates are considered in databases, some of which are partly outdated. Our paper addresses this disparity, by presenting life cycle inventory data gathered from industries producing coloured front glass by digital ceramic printing and manufacturing glass-glass PV laminates. In addition, we applied this data to a hypothetical façade made of multi-coloured glass-glass laminates and its electricity generation in terms of Swiss eco-points, global warming potential, and cumulative energy demand as impact indicators. The results of the latter show that the effect of the digital ceramic printing is negligible (increase of 0.1%), but the additional glass (4% increase) and reduction of electricity yield (20%) are significant in eco-points. The energy pay-back time for a multi-coloured PV façade is 8.1 years, which decreases by 35% to 5.3 years when replacing the glass rain cladding in an existing façade, leaving 25 years for surplus electricity generation.


2018 ◽  
Vol 5 (10) ◽  
pp. 249-258
Author(s):  
Amira Ghazouani ◽  
Naceur Mhamdi ◽  
Ibrahim-El-Akram Znaidi ◽  
Cyrine Darej ◽  
Norchene Guoiaa ◽  
...  

Life Cycle Assessment (LCA) is a tool to calculate greenhouse gas (GHG) emissions of dairy production. A survey was conducted in 20 dairy farms at the governorate of Sousse. The present study aimed to evaluate environmental impact of milk production at the farm regarding GHG emission and energy consumption. In the 20 dairy farms total GHG emissions resulted in a mean of 0.63 +/- 0.2 kg CH4/kg ECM and forage can contribute with a means 0.35 Le kg CO2eq/DM. The main reductions in GHG emissions per kg of FPCM started from 2,347 kg per cow per year and then the reduction slowed down to stabilize at around 6,127 kg FPCM per cow per year.


2017 ◽  
Vol 57 (6) ◽  
pp. 1149 ◽  
Author(s):  
Stephen Wiedemann ◽  
Rod Davis ◽  
Eugene McGahan ◽  
Caoilinn Murphy ◽  
Matthew Redding

Grain finishing of cattle has become increasingly common in Australia over the past 30 years. However, interest in the associated environmental impacts and resource use is increasing and requires detailed analysis. In this study we conducted a life cycle assessment (LCA) to investigate impacts of the grain-finishing stage for cattle in seven feedlots in eastern Australia, with a particular focus on the feedlot stage, including the impacts from producing the ration, feedlot operations, transport, and livestock emissions while cattle are in the feedlot (gate-to-gate). The functional unit was 1 kg of liveweight gain (LWG) for the feedlot stage and results are included for the full supply chain (cradle-to-gate), reported per kilogram of liveweight (LW) at the point of slaughter. Three classes of cattle produced for different markets were studied: short-fed domestic market (55–80 days on feed), mid-fed export (108–164 days on feed) and long-fed export (>300 days on feed). In the feedlot stage, mean fresh water consumption was found to vary from 171.9 to 672.6 L/kg LWG and mean stress-weighted water use ranged from 100.9 to 193.2 water stress index eq. L/kg LWG. Irrigation contributed 57–91% of total fresh water consumption with differences mainly related to the availability of irrigation water near the feedlot and the use of irrigated feed inputs in rations. Mean fossil energy demand ranged from 16.5 to 34.2 MJ lower heating values/kg LWG and arable land occupation from 18.7 to 40.5 m2/kg LWG in the feedlot stage. Mean greenhouse gas (GHG) emissions in the feedlot stage ranged from 4.6 to 9.5 kg CO2-e/kg LWG (excluding land use and direct land-use change emissions). Emissions were dominated by enteric methane and contributions from the production, transport and milling of feed inputs. Linear regression analysis showed that the feed conversion ratio was able to explain >86% of the variation in GHG intensity and energy demand. The feedlot stage contributed between 26% and 44% of total slaughter weight for the classes of cattle fed, whereas the contribution of this phase to resource use varied from 4% to 96% showing impacts from the finishing phase varied considerably, compared with the breeding and backgrounding. GHG emissions and total land occupation per kilogram of LWG during the grain finishing phase were lower than emissions from breeding and backgrounding, resulting in lower life-time emissions for grain-finished cattle compared with grass finishing.


Sign in / Sign up

Export Citation Format

Share Document