Formulation and Evaluation of Floating Bioadhesive Tablet of Candesartan Cilexetil Using 32 Factorial Designs

2021 ◽  
Vol 8 (10) ◽  
pp. 93-104
Author(s):  
Asish Dev ◽  
Nihar Lohagaonkar ◽  
Mansi Deshmukh

Objective: The objective of the work is to formulate candesartan cilexetil floating bioadhesive tablets which can considerably improve the bioavailability of medicine underneath the condition of redoubled continuance of drug in abdomen. Methods: Floating bioadhesive tablet was ready by direct compression of chemical compound like HPMCE15 and Carbopol934p together. Result: After analysis of different evaluation parameter and drug release, F4 batch was selected as promising formulation for delivery of candesartan cilexetil floating bioadhesive tablets with 91.22% drug release at 12th h. Conclusion: Among the further batches, the F4 batch was selected as an optimized batch as a result of the pre-compression and post-compression parameters results area unit satisfactory. Keywords: Candesartan cilexetil, Floating bioadhesive tablets, Polymer, Total floating time.

Author(s):  
PRADIP KUMAR CHAUDHARY ◽  
ABDUL RAHEEM T. ◽  
MANJUNATH U MACHALE ◽  
VASIA ◽  
SHAIK SADIK

Objective: The aim of the present study was to prepare and optimize levamisole chewable tablets by using various super disintegrants, namely; sodium starch glycolate, DRC Indion 204, and DRC Indion 234. Methods: Drug excipient compatibility study was carried out by FTIR spectroscopy to verify the compatibility of levamisole with the excipients. Nine batches of levamisole chewable tablets were prepared according to 32 factorial designs using a direct compression method by optimizing the super disintegrant concentration. The powder blend was exposed to pre-compression studies of the powder blend followed by post-compression studies of the formulated tablets. Results: FTIR study revealed that the excipients used in the formulations were compatible with the drug. The pre-compression and post-compression parameters were found within the IP limits. Form the dissolution studies, it was evident that the formulation prepared with DRC Indion 234 (50 mg) showed maximum percentage drug release in 45 min (97.13%) hence it is considered as optimized formulation. When compared to all other formulation, the batches with DRC Indion 234 (F7-F9) showed a better release of the drug (90 % drug release within 45 min). Conclusion: Nine batches of levamisole chewable tablets were successfully formulated by optimizing the concentration of super disintegrants such as sodium starch glycolate, DRC Indion 204, and DRC Indion 234. It was concluded from the dissolution studies that the DRC Indion 234 is the best super disintegrant irrespective of their concentration for the formulation of levamisole chewable tablets when compared to sodium starch Glycolate and DRC Indion 204.


Author(s):  
Sakthikumar T ◽  
Rajendran N N ◽  
Natarajan R

The present study was aimed to develop an extended release tablet of metoprolol Succinate for the treatment of hypertension.  Four extended release formulations F1-F4 were developed using varying proportions of hydroxylpropyl-methylcellulose K100M, sodium carboxy methyl cellulose and Eudragit L30 D55 by wet granulation. Five extended release formulations F5-F9 containing HPMC K100M and HPMC 5 cps in varying concentration were developed by direct compression. The physicochemical and in vitro release characteristics of all the formulations were investigated and compared. Two formulations, F7 and F8 have shown not more 25% drug release  in 1st h, 20%-40% drug release at 4th hour, 40%-60% drug release at 8th hour and not less than 80% at 20th hour and the release pattern conform with USP specification for 24 hours extended release formulation. It can be conclusively stated that optimum concentration of HPMC K100M (58%-65%) by direct compression method can yield an extended release of metoprolol succinate for 24 hours.


2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 


2019 ◽  
Vol 9 (4-s) ◽  
pp. 398-403
Author(s):  
Nidhi Kumari Pandey ◽  
Sailesh Kumar Ghatuary ◽  
Amit Dubey ◽  
Prabhat Kumar Jain

The objective of the present work was to develop Gastro retentive dosage forms which would remain in the stomach and upper part or GIT for a prolonged period of time thereby maximizing the drug release at desired site within the time before GRDFs left the stomach and upper part of the GIT, has provoked a great deal of increased interest in the formulation of such drug as floating drug delivery systems. Levofloxacin, (BCS class I) is a fluoroquinolone anti-bacterial agent. The rationale for the formulation of floating matrix tablet are acidic solubility of levofloxacin, residence of Halicobactor pylori mainly in sub region of stomach and the overdosing associated adverse effect due to continuous intake of drug in acute infection. A simple visible spectrophotometric method was employed for the estimation of levofloxacin at 294 nm and Beer’s law is obeyed in the concentration range of 2-10 μg /ml. Floating matrix tablet of levofloxacin was prepared by direct compression method using different polymers like hydroxyl propyl methyl cellulose (HPMC K4) and carbopol 934 as matrix formation polymers, sodium bicarbonate and citric acid was used as gas generating agents. The FTIR spectra of the levofloxacin and other excipients alone and in combination show the compatibility of the drug and excipients. Six formulations of different polymer percentages were formulated (F1-F6). Pre-compression parameters were evaluated. The influence of matrix forming agents and binary mixtures of them on levofloxacin release was investigated. The formulated tablets were characterized by hardness, friability, thickness, weight variation and in vitro drug release. The formulated tablets had acceptable physicochemical characters. The data obtained from the in-vitro dissolution studies of optimized batch F4were fitted in different models. The optimized formulation F4 showed 99.25% drug content and swelling index of 79.85 %. Drug release mechanism was found to be first order kinetics. Levofloxacin floating tablets exhibited increased gastric residence time, there by improved bioavailability and therapeutic effect of the drug.  


2021 ◽  
Vol 10 (5) ◽  
pp. 131-136
Author(s):  
Asim pasha ◽  
C N Somashekhar

The aim of the present work was to develop sustained release Lornoxicam matrix tablets with polymers like HPMC K15M, Ethyl cellulose, and Crospovidone as carriers in varying quantities. Direct compression was used to make matrix tablets. Various assessment parameters, such as hardness, friability, thickness, percent drug content, weight variation, and so on, were applied to the prepared formulations. In vitro dissolution studies were carried out for 24 hrs. The tablets were subjected to in-vitro drug release in (pH 1.2) for first 2 hrs. Then followed by (pH 6.8) phosphate buffer for next 22 hrs. And the results showed that among the six formulations FL3 showed good dissolution profile to control the drug release respectively. The drug and polymer compatibility were tested using FT-IR spectroscopy, which revealed that the drug was compatible with all polymers. It is also required to design an appropriate prolonged release formulation for Lornoxicam in order to maintain the drug's release. Hence by using the compatible polymers sustained release tablets were formulated and subjected for various types of evaluation parameters like friability, hardness, drug content and dissolution behaviour. Finally, the findings reveal that the prepared sustained release matrix tablets of lornoxicam have improved efficacy and patient compliance.


2019 ◽  
Vol 56 (1) ◽  
pp. 239-244
Author(s):  
Monica Iliuta Stamate ◽  
Ciprian Stamate ◽  
Daniel Timofte ◽  
Bogdan Ciuntu ◽  
Carmen Gafitanu ◽  
...  

In this study, the effect of polymers on the mechanical properties of ketoprofen extended drug release systems were studied. Many polymers are added in formulation of compressed tablets in order to improve the physicochemical characteristics of the drug release system. The samples were made in the form of cylindrical tablet about 9 mm in diameter, containing different mixtures of drug substances and excipients acording to seven formulations. Cylindrical tablets containing mixtures of ketoprofen and various types of polymers are made by direct compression method. Among the binders used were a series of different polymers like Kollidon va 64, hydroxypropyl methyl cellulose and sodium carboxyl methyl cellulose. Mechanical parameters such as hardness, mechanical strenght, friability and roughness were studied in order to determine how they are influenced by polymeric binders.


Bio-Research ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
BB Mohammed ◽  
EJ John ◽  
NK Ajuji

Tablets at present, remain the most preferred oral dosage form because of many advantages they offer to formulators as well as physicians and patients. The objective of this work was to determine the effect of co-processing on the disintegration and drug-release profile of ibuprofen tablets prepared from a co-processed excipient. The co-processed excipient (CE) containing lactose, gelatin and mucin in the ratio 90:9:1 was prepared using co-fusion. The excipient was evaluated for its physicochemical properties and then used to formulate tablets with the addition of a disintegrant by direct compression. The tablets were evaluated for their tablet properties and compared with tablets prepared with cellactose- 80® (CEL) and spray dried lactose® (SDL) and a physical mix (PM) of the co-processed ingredient. Results from evaluation of CE showed that flow rate, angle of repose, Carr’s index and Hausner’s ratio were 5.28 g/sec, 20.30o, 23.75 % and 1.31, respectively. Tablets prepared with CE had friability (0%), crushing strength (5.25) KgF, disintegration time (3 mins) and T50% (2 mins). For CEL, friability (0.4 %), crushing strength (7.25) KgF, disintegration time (1 min) and T50% (2 mins); SDL, friability (1.57 %), crushing strength (7.50) KgF, disintegration time (4 mins) and T50% (2 mins) and PM, friability (2.38 %), crushing strength (5.00) KgF, disintegration time (1 min) and T50% (2 mins). In conclusion, the disintegration time and drug release profile for CE was not superior but compared favorably with CEL, SDL and PM.  


2018 ◽  
Vol 8 (5-s) ◽  
pp. 235-239
Author(s):  
NILESH M MAHAJAN ◽  
Kalyanee Wanaskar ◽  
Yogesh Bhutada ◽  
Raju Thenge ◽  
Vaibhav Adhao

The aim of present study is to formulate and evaluate extended release matrix tablet of Nateglinide by direct compression method using different polymer like HPMC K4 and HPMC K15. Matrix tablet of nateglidine were prepared in combination with the polymer HPMC K4, HPMC K15, along with the excipients and the formulations were evaluated for tablet properties and in vitro drug release studies. Nateglinide matrix tablet prepared by using polymer such as HPMC K4 and HPMC K15,  it was found that HPMC K15 having higher viscosity as compare to HPMC K4 therefore different concentration of polymer were studied to extend the drug release up to 12 h. The tablets of Nateglinide prepared by direct compression had acceptable physical characteristics and satisfactory drug release. The study demonstrated that as far as the formulations were concerned, the selected polymers proved to have an acceptable flexibility in terms of in-vitro release profile. In present the study the percent drug release for optimize batch was found to 94.62%.  Hence it can be conclude that Nateglinide extended release matrix tablet can prepared by using HPMC. The swollen tablet also maintains its physical integrity during the drug release study Keywords: Tablet, in-vitro drug release, Nateglinide, HPMC


Author(s):  
J. I. Ordu ◽  
I. E. Udenze

Micro crystalline cellulose (MCC) is a major derivative from the bio composite of natural materials such as D. arborea plant stem. It could be useful as a secondary binder and disintegrant in tablet formulation especially following direct compression technique anticipating it to provide high level of disintegration at low use level and utilizing dual mechanisms of wicking and swelling. Tablets of aceclofenac a BCS class II and non steroidal anti inflammatory drug (NSAID) which potently inhibits the cyclo oxygenase enzyme (COX-2) involved in prostaglandin synthesis was formulated by direct compression using MCC from D. arborea stem. Qualitative assessment of the plant extract was carried out and the presence of cellulose confirmed by the appearance of violet – blue coloration while the physicochemical and physicotechnical properties were comparatively evaluated with reference to avicel and corn starch. Three batches of aceclofenac tablets involving Batch A (D. arborea MCC), Batch B (Corn starch) and Batch C (Corn starch and D. arborea MCC in a 1:1 ratio), were implcated in the formulation. Physicochemical study of the MCC reveals a pH of 7.8, mean swelling index 1.14±0.05 ml and hydration capacity of 3.60±0.15 g while the pH of corn starch is 3.90 with swelling and hydration capacity at 5.09±0.03 ml and 8.26±0.01 g respectively. Quality control evaluation of resulting tablet was investigated and the wetting time of batch A tablets was 1.50, batch B 2.30 and batch C 1.80 with percentage moisture content (%) of 60.5, 56.56 and 57.8 and disintegration time (minutes) of 0.22±0.07, 0.35±0.051 and 1.60±0.286 respectively. The drug release profile of batch A, reveals an initial burst release within 10 minutes followed by gradual release while batch C had consistent drug release which was maintained although faster than that of batch A after 10 minutes but batch B had the least drug release rate.


2019 ◽  
Vol 9 (4) ◽  
pp. 574-578
Author(s):  
Mohammad Faizan Mohammad Gufran ◽  
Sailesh Kumar Ghatuary ◽  
Reena Shende ◽  
Prabhat Kumar Jain ◽  
Geeta Parkhe

Formulation development is an important part of drug design and development. Bioavailability and bioequivalence are totally dependent on formulation development. Now-a-days formulation development is done by following QbD (Quality by Design).The aim of present study is to formulate Gemfibrozil (Gem) sustained release (SR) and immediate release (IR) bilayer tablet by different concentration of Hydroxypropyl methylcellulose (HPMC) and HPMC K 100 M to control the release pattern. The sustained release layer of Gem was prepared by using different grades of HPMC like, HPMC K-15, HPMC K-4 along with other excipients by direct compression technique. The immediate release layer of Gem was prepared by Cross carmellose sodium, Crospovidone and Sodium starch glycolate by direct compression technique. The powders were evaluated for their flow properties and the finished tablets were evaluated for their physical parameters. The both immediate release and sustained release layers of Gem were characterized by FT-IR and in vitro dissolution studies. The drug release study of Gem was evaluated using USP-II paddle type dissolution apparatus. The release rate of Gem in immediate release layer was studied for 15 min in 0.1 N HCL media and that of Gem in sustained release layer was studied for 12 h in 0.1 N HCL. From the nine batches F6 batch showed good release behaviour 99.85% of drug is released over 12 hours. Gem belongs to BCS Class II (log P 3.6) with poor solubility and high permeability resulting in limited and variable bioavailability. Total four trial batches of each drug have been manufactured to optimize and develop a robust and stable formulation, the stability studies of the products also comply with ICH guideline. Keywords: Bilayer floating tablets, Gemfibrozil, Biphasic drug release, HPMC K 15.


Sign in / Sign up

Export Citation Format

Share Document