scholarly journals Analisis Ukuran Kristal Dan Sifat Magnetik Melalui Proses Pemesinan Milling Menggunakan Metode Karakterisasi Xrd, Mechannical Alloying, Dan Ultrasonik Tekanan Tinggi Pada Material Barium Hexaferrite (Bafe12o19)

2020 ◽  
Vol 5 (1) ◽  
pp. 9-14
Author(s):  
Zulkani Sinaga ◽  
Joniwarta Joniwarta

ABSTRAKSintesa terhadap ukuran kristal dan sifat magnet dari material Barium Hexaferrite (BHF) hasil proses pemesinan milling selama 60 jam, setiap 10 jam proses pemesinan di lakukan analisa untuk  mengetahui ukuran partikel. Setelah proses pemanasan 1100o C dan penahanan selama 2 jam, dikarakterisasi XRD dan PSA. Dengan pendekatan persamaan Scherrer di dapat di sintesa ukuran kristal, dan partikel dari  material BHF  menggunakan  pengolahan melalui perangkat lunak Match diperoleh material satu fasa dengan nilai FWHM dengan parameter kisi a = b = 5,8920 Å, c= 23,1830 Å, struktur kristal berbentuk hexagonal, space group P63/mmc dan masa jenis 5,926 g/cm3. Ukuran kristal (crystallite size) dihitung berdasarkan puncak-puncak difraksi. Hasil perhitungan persamaan Scherrer diperoleh puncak indeks bidang kristal [hkl] dengan  posisi puncak sudut 2q³30° dan nilai rata-rata ukuran kristal yang terbentuk pada setiap bidang kisi dari BHF sebesar 57, 63639 nm. Kata kunci : XRD, Milling, Ukuran Kristal, Persamaan Scherrer, Parameter kisi, FWHM. ABSTRACTSynthesis of the crystal size and magnetic properties of the Barium Hexaferrite (BHF) material resulting from the milling machining process for 60 hours, every 10 hours the machining process is analyzed to determine the particle size. After 1100o C heating and detention for 2 hours, XRD and PSA were characterized. With the Scherrer equation approach it can be synthesized in crystal size, and particles from BHF material using processing through Match software obtained single phase material with FWHM values with lattice parameters a = b = 5.8920 Å, c = 23.1830 Å, crystal structure hexagonal shape, P63 / mmc space group and density of 5,926 g / cm3. Crystallite size is calculated based on diffraction peaks. The calculation result of the Scherrer equation obtained the peak of the crystal field index [hkl] with an angle peak position of 2q³30° and the average value of the crystal size formed in each lattice plane of the BHF of 57,63639 nm.Keywords : XRD, Milling, Crystal Size, Scherrer Equation, Lattice Parameters, FWHM.

1989 ◽  
Vol 22 (6) ◽  
pp. 578-583 ◽  
Author(s):  
D. K. Suri ◽  
K. C. Nagpal ◽  
G. K. Chadha

The semiconducting compound CuGa x In1 − x Se2 crystallizes in the chalcopyrite structure (space group I{\bar 4}2d, Z = 4). The X-ray powder data for x = 1, 0.75, 0.6, 0.5, 0.4, 0.25 and 0.0 have been collected and it is found that the lattice parameters a and c and their ratio c/a vary linearly with x. Thus the composition of any chalcopyrite in the pseudo-binary system CuGaSe2 and CuInSe2 can be obtained from the accurate lattice parameters. The crystallite size determined from the (112) plane is minimum for x = 0.50 (~ 1000 Å) and away from x = 0.50 it increases. A value of u = 0.240 (5) has been established for fixing the Se-atom positions in the CuGa0.5In0.5Se2 solid solution. The JCPDS Diffraction File No. for CuInSe2 is 40-1487 and for CuGa0.5In0.5Se2 is 40-1488.


Author(s):  
K.P.D. Lagerlöf ◽  
A.H. Heuer ◽  
T.E. Mitchell

It has been reported by Lally et. al. [1] that precipitates of hematite (Fe2O3, space group R3c) in a matrix of ilmenite (FeTiO3, space group R3) are lens shaped and flattened along the [0001]-direction. The coherency across the interface is lost by the introduction of a misfit dislocation network, which minimizes the strain due to the deviation in lattice parameters between the two phases [2]. The purpose of this paper is to present a new analysis of this network.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 874 ◽  
Author(s):  
Ranjdar Abdullah ◽  
Shujahadeen Aziz ◽  
Soran Mamand ◽  
Aso Hassan ◽  
Sarkawt Hussein ◽  
...  

The PEO-based polymer nanocomposites were prepared by solution cast method. Green approaches were used for synthesis of carbon nanodots (CNDs) and silver nanoparticles (Ag NPs). It was found that the crystallite size of spherulites of PEO was greatly scarified upon incorporation of CNDs and Ag NPs. In the present work, in opposition to other studies, broadening of surface plasmon resonance (SPR) peak of metallic Ag NPs in PEO-based polymer composites was observed rather than peak tuning. Various techniques, such as powder X-ray diffraction (XRD), SEM, UV–Vis spectroscopy, and photoluminescence (PL), were used to characterize the structural, morphological, and optical properties of the samples. Increase of amorphous phase for the PEO doped with CND particles was shown from the results of XRD analyses. Upon the addition of suspended Ag NPs to the PEO:CNDs composites, significant change of XRD peak position was seen. A field-emission scanning electron microscope (FESEM) was used to investigate the surface morphology of the samples. In the SEM, a significant change in the crystalline structure was seen. The size of PEO spherulites in the PEO nanocomposite samples became smaller and the percentage of amorphous portion became larger, owing to the distribution of CNDs and Ag NPs. The UV–Vis absorption spectra of the PEO-based polymer were found to improve and shift to higher wavelengths upon incorporation of CNDs and Ag NPs into the PEO matrix. The SPR peak broadening in the UV–Vis spectra was observed in the PEO:CNDs composites due to the Ag NPs. The absorption edge value of PEO was found to shift toward lower photon energy as the CNDs and Ag NPs are introduced. The photoluminescence (PL) spectra were also observed for the PEO:CNDs and PEO:CNDs:Ag samples and found to be more intense in the PEO:CNDs system than in the PEO:CNDs:Ag system. Lastly, the optical band gap of the samples was further studied in detail using of Tauc’s model and optical dielectric loss parameter. The types of electron transition were specified.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


Author(s):  
Nataliya L. Gulay ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Yaroslav M. Kalychak ◽  
Stefan Seidel ◽  
...  

Abstract The equiatomic indide ScPtIn (ZrNiAl type, space group P 6 ‾ $‾{6}$ 2m) shows an extended solid solution Sc3Pt3–xIn3. Several samples of the Sc3Pt3–xIn3 series were synthesized from the elements by arc-melting and subsequent annealing, or directly in a high frequency furnace. The lowest platinum content was observed for Sc3Pt2.072(3)In3. All samples were characterized by powder X-ray diffraction and their lattice parameters and several single crystals were studied on the basis of precise single crystal X-ray diffractometer data. The correct platinum occupancy parameters were refined from the diffraction data. Decreasing platinum content leads to decreasing a and c lattice parameters. Satellite reflections were observed for the Sc3Pt3–xIn3 crystals with x = 0.31–0.83. These satellite reflections could be described with a modulation vector ( 1 3 , 1 3 , γ ) $\left(\frac{1}{3},\frac{1}{3},\gamma \right)$ ( γ = 1 2 $\gamma =\frac{1}{2}$ c* for all crystals) and are compatible with trigonal symmetry. The interplay of platinum filled vs. empty In6 trigonal prisms is discussed for an approximant structure with space group P3m1.


2015 ◽  
Vol 1112 ◽  
pp. 57-61 ◽  
Author(s):  
Amalia Sholehah ◽  
Akhmad Herman Yuwono

In the present work, ZnO nanostructures were synthesized via wet chemistry method. The seeding solution was prepared from zinc nitrate tetrahydrate and hexamethylenetetramine. Prior to the heating process, the seeding solution was immersed in cold bath (0°C). XRD analysis had shown sharp peaks in diffractogram, indicating the high crystallinity of ZnO nanostructures. The crystallite size was determined using Scherrer equation and Williamson-Hall method. Other relevant parameters including stress, strain, and energy density were calculated using Williamson-Hall assuming UDM, UDSM, and UDEDM. The results had revealed that crystallite size calculated with Williamson-Hall method is more accurate than Scherrer equation.


1994 ◽  
Vol 49 (6) ◽  
pp. 733-740 ◽  
Author(s):  
Klaus Stöwe

Well-shaped brown and pink isometric crystals were obtained as by-products of the synthesis of erbium selenides from the elements in evacuated and sealed silica ampoules with graphite inlets. They could be identified as erbium seleno mono- and disilicates by energy dispersive X-ray fluorescence and X-ray structure determination. The monosilicate Er2SeSiO4 crystallizes isotypically to Nd2SeSiO4 in the space group Pbcm with the lattice parameters a = 600.2(2), b = 688.0(2), c = 1075.2(2) pm and represents the second known seleno inosilicate of the rare earths. From X-ray structure analysis an isotypic relation between the disilicate Er3,75Ca0,25Se2,75Cl0,25Si2O7 and the compound Sm4S3Si2O7 was found, the former crystallizing in the space group I41/amd with the lattice parameters a - 1177.7(2) and c = 1376.5(2) pm. The doping o f the sorosilicate with the elements Ca and Cl originated from contam inations in the graphit inlets used in the procedure


Sign in / Sign up

Export Citation Format

Share Document