scholarly journals Silver nitrate restores susceptibility of clinical multidrug resistant gram-negative and gram-positive bacteria to amikacin in vitro

2014 ◽  
Vol 23 (7) ◽  
Author(s):  
Cunbao Liu
2010 ◽  
Vol 54 (9) ◽  
pp. 3974-3977 ◽  
Author(s):  
Michelle M. Butler ◽  
John D. Williams ◽  
Norton P. Peet ◽  
Donald T. Moir ◽  
Rekha G. Panchal ◽  
...  

ABSTRACT Antimicrobial susceptibilities of 233 Gram-positive and 180 Gram-negative strains to two novel bis-indoles were evaluated. Both compounds were potent inhibitors of Gram-positive bacteria, with MIC90 values of 0.004 to 0.5 μg/ml. One bis-indole, MBX 1162, exhibited potent activity against all Gram-negative strains, with MIC90 values of 0.12 to 4 μg/ml, even against high-level-resistant pathogens, and compared favorably to all comparator antibiotics. The bis-indole compounds show promise for the treatment of multidrug-resistant clinical pathogens.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 289 ◽  
Author(s):  
Decha Kumla ◽  
José Pereira ◽  
Tida Dethoup ◽  
Luis Gales ◽  
Joana Freitas-Silva ◽  
...  

A previously unreported chromene derivative, 1-hydroxy-12-methoxycitromycin (1c), and four previously undescribed chromone derivatives, including pyanochromone (3b), spirofuranochromone (4), 7-hydroxy-6-methoxy-4-oxo-3-[(1E)-3-oxobut-1-en-1-yl]-4H-chromene-5-carboxylic acid (5), a pyranochromone dimer (6) were isolated, together with thirteen known compounds: β-sitostenone, ergosterol 5,8-endoperoxide, citromycin (1a), 12-methoxycitromycin (1b), myxotrichin D (1d), 12-methoxycitromycetin (1e), anhydrofulvic acid (2a), myxotrichin C (2b), penialidin D (2c), penialidin F (3a), SPF-3059-30 (7), GKK1032B (8) and secalonic acid A (9), from cultures of the marine sponge- associated fungus Penicillium erubescens KUFA0220. Compounds 1a–e, 2a, 3a, 4, 7–9, were tested for their antibacterial activity against Gram-positive and Gram-negative reference and multidrug-resistant strains isolated from the environment. Only 8 exhibited an in vitro growth inhibition of all Gram-positive bacteria whereas 9 showed growth inhibition of methicillin-resistant Staphyllococus aureus (MRSA). None of the compounds were active against Gram-negative bacteria tested.


Antibiotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Andrea Vila Domínguez ◽  
Rafael Ayerbe Algaba ◽  
Andrea Miró Canturri ◽  
Ángel Rodríguez Villodres ◽  
Younes Smani

Due to the emergence of antimicrobial resistance, new alternative therapies are needed. Silver was used to treat bacterial infections since antiquity due to its known antimicrobial properties. Here, we aimed to evaluate the in vitro activity of colloidal silver (CS) against multidrug-resistant (MDR) Gram-negative and Gram-positive bacteria. A total of 270 strains (Acinetobacter baumannii (n = 45), Pseudomonas aeruginosa (n = 25), Escherichia coli (n = 79), Klebsiella pneumoniae (n = 58)], Staphylococcus aureus (n = 34), Staphylococcus epidermidis (n = 14), and Enterococcus species (n = 15)) were used. The minimal inhibitory concentration (MIC) of CS was determined for all strains by using microdilution assay, and time–kill curve assays of representative reference and MDR strains of these bacteria were performed. Membrane permeation and bacterial reactive oxygen species (ROS) production were determined in presence of CS. CS MIC90 was 4–8 mg/L for all strains. CS was bactericidal, during 24 h, at 1× and 2× MIC against Gram-negative bacteria, and at 2× MIC against Gram-positive bacteria, and it did not affect their membrane permeabilization. Furthermore, we found that CS significantly increased the ROS production in Gram-negative with respect to Gram-positive bacteria at 24 h of incubation. Altogether, these results suggest that CS could be an effective treatment for infections caused by MDR Gram-negative and Gram-positive bacteria.


2005 ◽  
Vol 49 (8) ◽  
pp. 3501-3512 ◽  
Author(s):  
Helio S. Sader ◽  
Thomas R. Fritsche ◽  
Koné Kaniga ◽  
Yigong Ge ◽  
Ronald N. Jones

ABSTRACT PPI-0903M is a novel N-phosphono-type cephalosporin active against oxacillin-resistant staphylococci and many other gram-positive organisms. This study evaluated the in vitro activity and spectrum of PPI-0903M against 1,478 recent clinical isolates collected from 80 medical centers (22 countries). PPI-0903M demonstrated broader in vitro activity against gram-positive bacteria, particularly against multidrug-resistant staphylococci and streptococci of current clinical concern, than currently available extended-spectrum cephalosporins while maintaining similar activity against gram-negative pathogens.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2015 ◽  
Vol 25 (2-3) ◽  
pp. 79-93 ◽  
Author(s):  
Joseph W. Lengeler

<b><i>Past:</i></b> The title ‘PTS 50 or The PTS after 50 years' relies on the first description in 1964 of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS) by Kundig, Gosh and Roseman [Proc Natl Acad Sci USA 1964;52:1067-1074]. The system comprised proteins named Enzyme I, HPr and Enzymes II, as part of a novel PTS for carbohydrates in Gram-negative and Gram-positive bacteria, whose ‘biological significance remained unclear'. In contrast, studies which would eventually lead to the discovery of the central role of the PTS in bacterial metabolism had been published since before 1942. They are primarily linked to names like Epps and Gale, J. Monod, Cohn and Horibata, and B. Magasanik, and to phenomena like ‘glucose effects', ‘diauxie', ‘catabolite repression' and carbohydrate transport. <b><i>Present:</i></b> The pioneering work from Roseman's group initiated a flood of publications. The extraordinary progress from 1964 to this day in the qualitative and in vitro description of the genes and enzymes of the PTS, and of its multiple roles in global cellular control through ‘inducer exclusion', gene induction and ‘catabolite repression', in cellular growth, in cell differentiation and in chemotaxis, as well as the differences of its functions between Gram-positive and Gram-negative bacteria, was one theme of the meeting and will not be treated in detail here. <b><i>Future:</i></b> At the 1988 Paris meeting entitled ‘The PTS after 25 years', Saul Roseman predicted that ‘we must describe these interactions [of the PTS components] in a quantitative way [under] in vivo conditions'. I will present some results obtained by our group during recent years on the old phenomenon of diauxie by means of very fast and quantitative tests, measured in vivo, and obtained from cultures of isogenic mutant strains growing under chemostat conditions. The results begin to hint at the problems relating to future PTS research, but also to the ‘true science' of Roseman.


2019 ◽  
Vol 20 (2) ◽  
Author(s):  
Anna Kędzia ◽  
Elżbieta Hołderna-Kędzia

Introduction. Cypress (Cupressus sempervirens L.) belongs to the family Cupressaceae. It is evergreen, and grows in Mediterranean region. The Cypress leaves and young branches are utilized to produce the essential oil. Cypress oil contain a number of components, in it α-pinene, Δ3-carene, α-terpinyl acetate, cedrol, α-terpinolene, β-myrcene, limonene, α-terpineolene, terpinen-4-ol, β-pinene, δ-cadinene and sabinene. The oil is used in therapy different diseases. It to have antimicrobial activity. Aim. The aim of the date was evaluation the susceptibility of anaerobic bacteria to Cypress oil. Material and methods. The anaerobic bacteria were isolated from patients. The 62 microorganisms, in it 36 strains of Gram-negative rods, 14 Gram-positive cocci and 12 Gram-positive rods, and 7 reference strains were tested. Susceptibility (MIC) was determined by means of plate dilution technique in Brucella agar supplemented with 5% defibrynated sheep blood, menadione and hemin. The Cypress oil was dissolved in DMSO and distilled water to obtain final following concentrations: 2.5, 5.0, 7.5, 10.0, 15.0 and 20.0 mg/ml. Inoculum containing 106 CFU per 1 ml was seeded with Steers replicator upon the agar with oil or without the oil (strains growth control). The agar plates was incubated in anaerobic condition in anaerobic jar in 37°C for 48 hrs. The MIC was interpreted as the lowest concentration of Cypress oil inhibiting the growth of tested bacteria. Results. The results indicated that from among Gram-negative rods the most susceptible to Cypress oil was the strains from genus Tannerella forsythia (MIC < 2.5-5.0 mg/ml), Bacteroides uniformis (MIC = 5.0 mg/ml), Bacteroides vulgatus and Porphyromonas asaccharolytica (MIC 5.0-7.5 mg/ml) and Porphyromonas levii (MIC = 7.5 mg/ml). The strains from genera Fusobacterium and of Bacteroides fragilis were the susceptible to 2.5-≥ 20.0 mg/ml. The Cypress oil was least active towards Prevotella and Parabacteroides strains (MIC ≥ 20.0 mg/ml).The tested Gram-positive cocci were more susceptible. The growth of the strains were inhibited by concentrations in ranges ≤ 2.5-7.5 mg/ml. The oil was minor active towards Gram-positive rods (MIC ≤ 2.5-20.0 mg/ml). Among the strains the genus of Actinomyces odontolyticus (MIC = 5.0 mg/ml) and Actinomyces viscosus (MIC ≤ 2.5-7.5 mg/ml) were the most susceptible. The growth of rods of Bifidobacterium breve was inhibited by concentrations 10.0 mg/ml. The data indicates that the Gram-negative rods were the less susceptible than Gram-positive bacteria to cypress oil. Conclusions. Among Gram-negative rods the most susceptible were the strains Tannerella forsythia, Bacteroides uniformis, Bacteroides vulgatus, Porphyromonas asaccharolytica and Porphyromonas levii. The oil was more active against Gram-positive cocci. Gram-positive anaerobic bacteria demonstrate the more susceptible to Cypress oil then Gram-positive rods.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2077 ◽  
Author(s):  
Andrea Díaz-Roa ◽  
Abraham Espinoza-Culupú ◽  
Orlando Torres-García ◽  
Monamaris M. Borges ◽  
Ivan N. Avino ◽  
...  

Antibiotic resistance is at dangerous levels and increasing worldwide. The search for new antimicrobial drugs to counteract this problem is a priority for health institutions and organizations, both globally and in individual countries. Sarconesiopsis magellanica blowfly larval excretions and secretions (ES) are an important source for isolating antimicrobial peptides (AMPs). This study aims to identify and characterize a new S. magellanica AMP. RP-HPLC was used to fractionate ES, using C18 columns, and their antimicrobial activity was evaluated. The peptide sequence of the fraction collected at 43.7 min was determined by mass spectrometry (MS). Fluorescence and electronic microscopy were used to evaluate the mechanism of action. Toxicity was tested on HeLa cells and human erythrocytes; physicochemical properties were evaluated. The molecule in the ES was characterized as sarconesin II and it showed activity against Gram-negative (Escherichia coli MG1655, Pseudomonas aeruginosa ATCC 27853, P. aeruginosa PA14) and Gram-positive (Staphylococcus aureus ATCC 29213, Micrococcus luteus A270) bacteria. The lowest minimum inhibitory concentration obtained was 1.9 μM for M. luteus A270; the AMP had no toxicity in any cells tested here and its action in bacterial membrane and DNA was confirmed. Sarconesin II was documented as a conserved domain of the ATP synthase protein belonging to the Fli-1 superfamily. The data reported here indicated that peptides could be alternative therapeutic candidates for use in infections against Gram-negative and Gram-positive bacteria and eventually as a new resource of compounds for combating multidrug-resistant bacteria.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Gregory G. Stone ◽  
Patricia A. Bradford ◽  
Margaret Tawadrous ◽  
Dianna Taylor ◽  
Mary Jane Cadatal ◽  
...  

ABSTRACT Nosocomial pneumonia (NP), including ventilator-associated pneumonia (VAP), is increasingly associated with multidrug-resistant Gram-negative pathogens. This study describes the in vitro activity of ceftazidime-avibactam, ceftazidime, and relevant comparator agents against bacterial pathogens isolated from patients with NP, including VAP, enrolled in a ceftazidime-avibactam phase 3 trial. Gram-positive pathogens were included if coisolated with a Gram-negative pathogen. In vitro susceptibility was determined at a central laboratory using Clinical and Laboratory Standards Institute broth microdilution methods. Of 817 randomized patients, 457 (55.9%) had ≥1 Gram-negative bacterial pathogen(s) isolated at baseline, and 149 (18.2%) had ≥1 Gram-positive pathogen(s) coisolated. The most common isolated pathogens were Klebsiella pneumoniae (18.8%), Pseudomonas aeruginosa (15.8%), and Staphylococcus aureus (11.5%). Ceftazidime-avibactam was highly active in vitro against 370 isolates of Enterobacteriaceae, with 98.6% susceptible (MIC90, 0.5 μg/ml) compared with 73.2% susceptible for ceftazidime (MIC90, >64 μg/ml). The percent susceptibility values for ceftazidime-avibactam and ceftazidime against 129 P. aeruginosa isolates were 88.4% and 72.9% (MIC90 values of 16 μg/ml and 64 μg/ml), respectively. Among ceftazidime-nonsusceptible Gram-negative isolates, ceftazidime-avibactam percent susceptibility values were 94.9% for 99 Enterobacteriaceae and 60.0% for 35 P. aeruginosa. MIC90 values for linezolid and vancomycin (permitted per protocol for Gram-positive coverage) were within their respective MIC susceptibility breakpoints against the Gram-positive pathogens isolated. This analysis demonstrates that ceftazidime-avibactam was active in vitro against the majority of Enterobacteriaceae and P. aeruginosa isolates from patients with NP, including VAP, in a phase 3 trial. (This study has been registered at ClinicalTrials.gov under identifier NCT01808092.)


Sign in / Sign up

Export Citation Format

Share Document