scholarly journals Sarconesin II, a New Antimicrobial Peptide Isolated from Sarconesiopsis magellanica Excretions and Secretions

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2077 ◽  
Author(s):  
Andrea Díaz-Roa ◽  
Abraham Espinoza-Culupú ◽  
Orlando Torres-García ◽  
Monamaris M. Borges ◽  
Ivan N. Avino ◽  
...  

Antibiotic resistance is at dangerous levels and increasing worldwide. The search for new antimicrobial drugs to counteract this problem is a priority for health institutions and organizations, both globally and in individual countries. Sarconesiopsis magellanica blowfly larval excretions and secretions (ES) are an important source for isolating antimicrobial peptides (AMPs). This study aims to identify and characterize a new S. magellanica AMP. RP-HPLC was used to fractionate ES, using C18 columns, and their antimicrobial activity was evaluated. The peptide sequence of the fraction collected at 43.7 min was determined by mass spectrometry (MS). Fluorescence and electronic microscopy were used to evaluate the mechanism of action. Toxicity was tested on HeLa cells and human erythrocytes; physicochemical properties were evaluated. The molecule in the ES was characterized as sarconesin II and it showed activity against Gram-negative (Escherichia coli MG1655, Pseudomonas aeruginosa ATCC 27853, P. aeruginosa PA14) and Gram-positive (Staphylococcus aureus ATCC 29213, Micrococcus luteus A270) bacteria. The lowest minimum inhibitory concentration obtained was 1.9 μM for M. luteus A270; the AMP had no toxicity in any cells tested here and its action in bacterial membrane and DNA was confirmed. Sarconesin II was documented as a conserved domain of the ATP synthase protein belonging to the Fli-1 superfamily. The data reported here indicated that peptides could be alternative therapeutic candidates for use in infections against Gram-negative and Gram-positive bacteria and eventually as a new resource of compounds for combating multidrug-resistant bacteria.

Author(s):  
Hashem A. Abu-Harirah ◽  
Kawther Amawi ◽  
Ammar S. Ali Deeb ◽  
Haytham M. Daradka ◽  
Nawal Fares ◽  
...  

Background: Many types of infection can cause pus Infections involving the bacteria; E.coli, so the assessment of multidrug Bacterial profile and patterns is needed to understand the source and management of these injuries. Purpose: To determine infections and patterns toward antibiotics of pus isolates and recurrent wound infections in nongovernmental hospitals of Jordan Methods: During period eleven months, 607 Patients were involved, out of which 128 patients had pus samples and/or recurrent wound infections. Data analysis was done using SPSS version 20. P value was set at <0.05. Results: One hundred twenty eight (21.1%) out of 607 patients were identified to had pus isolates and/or wound recurrent infections 86(87%) out of 128 patients had infections with known pathogenic microbes. Microbiological culture pattern was total of 19 different pathogenic microorganisms were isolated from the participants, with mixed gram-positive and gram-negative species; percentage of 37% gram-positive aerobic bacteria and 63% gram-negative aerobic bacteria. Conclusion: The global burden from multidrug resistant bacteria highly impacted in wound and pus-causing infections, either in hospital acquired infections or community acquired infections. The main causative agents of recurrent wound infection were Staph. aureus MRSA, E. coli, Pseudomonas aeruginosa, Acinetobacter spp (MDR). Gram-negative bacteria caused the most of infections by more than 67% comparing with gram-positive bacteria.


Author(s):  
Pratirodh Koirala ◽  
Dwij Raj Bhatta ◽  
Prakash Ghimire ◽  
Bharat Mani Pokhrel ◽  
Upendra Devkota

The tracheostomized patients are colonized mostly by gram negative bacteria which lead to either tracheobronchitis or bronchopneumonia. This study was conducted to isolate and identify the potential pathogen causing post tracheostomy infection. A cross-sectional study was conducted during April 2008 to February 2009 based at Neuro Center, Kathmandu. Tracheal aspirates of 50 patients having fever more than 38°C were collected and analyzed for bacterial content. Out of the 50 cases, 45(90%) cases showed bacterial growth. Sixty-seven isolates were identified; with 20(44.4%) poly-microbial cases. Pseudomonas aeruginosa and enteric gram negative bacteria were predominant bacteria (n=27, 40.3%) followed by Staphylococcus aureus (n=7, 10.4%), other Gram negative bacteria (n=4, 5.9%) and Viridans Streptococci (n=2, 2.9%). Pseudomonas aeruginosa were most sensitive to the Amikacin (n=22, 81.4%) and Ciprofloxacin (n=19, 70.3%). All Pseudomonal isolates were resistant to the Cefotaxime. Enteric Gram Negative bacteria (EGNB) were most sensitive to Amikacin and Chloramphenicol (20, 74.0%) and all were resistant to Ampicillin and Cephalexin. All the gram positive bacteria isolated were sensitive to Vancomycin. Among the total isolates, 24 (88.8%) of Pseudomonas aeruginosa, 21 (66.6%) of enteric gram negative bacteria, and 5 (55.5%) of Gram positive bacteria were multidrug resistant (MDR). The study reported alarming condition of MDR in tracheal aspirates. So surveillance for source of multidrug resistant bacteria would be beneficial for intervention of infection related to it. Key words: Tracheal aspirates, polymicrobial growth, Multidrug resistant bacteria (MDR)10.3126/ijls.v4i0.3496International Journal of Life Sciences Vol.4 2010 pp.60-65


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2888 ◽  
Author(s):  
Buthaina Jubeh ◽  
Zeinab Breijyeh ◽  
Rafik Karaman

The discovery of antibiotics has created a turning point in medical interventions to pathogenic infections, but unfortunately, each discovery was consistently followed by the emergence of resistance. The rise of multidrug-resistant bacteria has generated a great challenge to treat infections caused by bacteria with the available antibiotics. Today, research is active in finding new treatments for multidrug-resistant pathogens. In a step to guide the efforts, the WHO has published a list of the most dangerous bacteria that are resistant to current treatments and requires the development of new antibiotics for combating the resistance. Among the list are various Gram-positive bacteria that are responsible for serious healthcare and community-associated infections. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and drug-resistant Streptococcus pneumoniae are of particular concern. The resistance of bacteria is an evolving phenomenon that arises from genetic mutations and/or acquired genomes. Thus, antimicrobial resistance demands continuous efforts to create strategies to combat this problem and optimize the use of antibiotics. This article aims to provide a review of the most critical resistant Gram-positive bacterial pathogens, their mechanisms of resistance, and the new treatments and approaches reported to circumvent this problem.


2013 ◽  
Vol 33 (7) ◽  
pp. 975-981 ◽  
Author(s):  
Alexandra Alexopoulou ◽  
Nikolaos Papadopoulos ◽  
Dimitrios G. Eliopoulos ◽  
Apostolia Alexaki ◽  
Athanasia Tsiriga ◽  
...  

2017 ◽  
Vol 66 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Fevronia Kolonitsiou ◽  
Matthaios Papadimitriou-Olivgeris ◽  
Anastasia Spiliopoulou ◽  
Vasiliki Stamouli ◽  
Vasileios Papakostas ◽  
...  

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections’ (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011–13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs’ incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative’s BSI.


2018 ◽  
Vol 10 (3) ◽  
pp. 622-628
Author(s):  
Fitri Arum Sasi ◽  
Hermin Pancasakti Kusumaningrum ◽  
Anto Budiharjo

Indigenous bacteria are able to remove the metals contamination in environment. This study aimed to assess the resistance of bacterial species to Zinc (Zn) in Banger River, Pekalongan City. The bacteria from three different parts of Banger River were isolated and inoculated in Zn-selective medium. Then, molecular identification to determine the bacteria species was conducted using polymerase chain reaction (PCR) by applying forward-reverse 16SrRNA gene primers. The sequences analysis was conducted using MUSCLE and MEGA6. There were seven dominant species that possibly resistant to Zn. Approximately, every isolate could reach more than 95 % from 2000 ppm of Zn in the medium. The higher absorption of Zn was found in Z5 isolate. The seven bacteria species were clustered into nine genera i.e. Klebsiela, Xenorhabdus, Cronobacter, Enterobacter, Escherichia, Shigella and Sporomusa known as Gram Negative bacteria and Clostridium and Bacillus as Gram Positive bacteria. In Gram Positive bacteria, especially Bacillus sp, carboxyl group in peptidoglycan play a role as metal binder. In Gram-negative bacteria, lipopolysaccharide (LPS) which is highly anionic component on the outer membrane, able to catch the Zn. Besides that, Enterobacter activates endogen antioxidants such as glutathione peroxidase (GSHPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD). The research found there was possible seven novel indigenous bacteria species in Banger that able to remove Zn from the sediment extremely. This finding can be developed as an eco-friendly approach to reduce metals pollution using local microorganisms.


2019 ◽  
Vol 13 (1) ◽  
pp. 301-307
Author(s):  
Alem A. Kalayu ◽  
Ketema Diriba ◽  
Chuchu Girma ◽  
Eman Abdella

Background: Surgical Site Infections (SSIs) are among the frequently reported healthcare-acquired infections worldwide. Successful treatment of SSIs is affected by the continuous evolvement of drug-resistant microbes. This study investigated the incidence of SSIs, identifying the major etiologic agents and their drug resistance patterns in Yekatit 12 Hospital, Ethiopia. Methods: A cross-sectional study was conducted on 649 patients who underwent surgery at Yekatit 12 hospital from April 2016 to April 2017. Socio-demographic and clinical data were collected from each patient on admission. After surgery, they were followed for SSI occurrence. SSI was initially diagnosed by a senior surgeon based on standard clinical criteria and then confirmed by culture. Isolates were tested for drug resistance according to the clinical and laboratory standards institute guideline. Results: Of the 649 study participants, 56% were females. Their age ranged from 9 months to 88 years with a median age of 37 years. The incidence of culture-confirmed SSI was 10.2% (66/649) where 73 isolates were recovered. About two-third of the isolates were Gram-positive bacteria. Staphylococcus aureus was the most frequently isolated (27/73, 37%) followed by Coagulase-negative staphylococci (18/73, 24.7%), Escherichia coli (11/73, 15.1%) and Klebsiella species (10/73, 13.7%). About 89% and 44% of S. aureus isolates were resistant to penicillin and trimethoprim-sulfamethoxazole, respectively. MRSA constituted 11% of the S. aureus isolates. All the Gram-negative isolates were resistant to ampicillin and trimethoprim-sulfamethoxazole but susceptible to amikacin and meropenem. Klebsiella species showed 70-100% resistance to ceftazidime, cefuroxime, augmentin, chloramphenicol, ciprofloxacin, cefepime and gentamicin. About 82% of E. coli isolates were resistant for chloramphenicol, cefepime, ceftazidime, augmentin, cefuroxime and 64% for gentamicin and ciprofloxacin. Conclusion: The incidence of surgical site infection in Yekatit 12 hospital is 10.2%. Most of the SSIs were due to Gram-positive bacteria. Gram-negative isolates showed high resistance to the most commonly prescribed drugs. No resistance was found for meropenem indicating the absence of carbapenem-resistant bacteria. SSI treatments should be guided by culture and drug resistance test. Better infection prevention practices and continuous surveillance of antimicrobial resistance in the hospital are recommended for better patient care.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document