scholarly journals Surnames Derived from Pastoral Terminology

Philologia ◽  
2021 ◽  
pp. 57-71
Author(s):  
Teodor Oanca ◽  
Keyword(s):  

Growing cattle and especially sheep was one of the main traditional Romanian occupations. Some of the terms used in this field became nicknames and later surnames. The Romanian anthroponymic database includes such surnames (listed in the Annex) and specifies the distribution of the bearers by county and region.

2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Edward H. Cabezas-Garcia ◽  
Denise Lowe ◽  
Francis Lively

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 233-234
Author(s):  
David N Kelly ◽  
Roy D Sleator ◽  
Craig P Murphy ◽  
Stephen B Conroy ◽  
Donagh P Berry

Abstract To the best of our knowledge, the genetic variability in feeding behavior, as well as relationships with performance and feed efficiency, has not been investigated in a cattle population of greater than 1,500 animals. Our objective was to quantify the genetic parameters of several feeding behavior traits, and their genetic associations with both performance and feed efficiency traits, in crossbred growing cattle. Feed intake and live-weight data were available on 6,088 bulls, steers and heifers; of these, 4,672 cattle had backfat and muscle ultrasound data, and 1,548 steers and heifers had feeding behavior data. Genetic (co)variance parameters were estimated using animal linear mixed models; fixed effects included test group, heterosis, recombination loss, dam parity, age in months at the end of test, and the two-way interaction between age in months at the end of test and sex. Heritability was estimated to be 0.51 (0.097), 0.61 (0.100), 0.44 (0.093), 0.48 (0.094), and 0.47 (0.095) for feed events per day, feeding time per day, feeding rate, feed event duration, and energy intake per feed event, respectively. Coefficients of genetic variation ranged from 0.11 (feeding time per day) to 0.22 (feed event duration). Genetically heavier cattle with a higher energy intake per day, and faster growth rate, had a faster feeding rate and a greater energy intake per feed event. Genetic correlations between feeding behavior and feed efficiency were generally not different from zero, however, there was a genetic correlation of 0.36 (0.11) between feeding time per day and residual energy intake. Significant heritable and exploitable genetic variation exists in several feeding behavior traits in crossbred growing cattle which are also correlated with several performance traits. As some feeding behavior traits may be relatively less resource intensive to measure, they could be useful as predictor traits in beef cattle genetic evaluations.


2018 ◽  
Vol 3 (3) ◽  
pp. 1029-1039 ◽  
Author(s):  
Luis O Tedeschi

Abstract Interrelationships between retained energy (RE) and retained protein (RP) that are essential in determining the efficiency of use of feeds and the assessment of energy and protein requirements of growing cattle were analyzed. Two concerns were identified. The first concern was the conundrum of a satisfactory correlation between observed and predicted RE (r = 0.93) or between observed and predicted RP when using predicted RE to estimate RP (r = 0.939), but a much lower correlation between observed and predicted RP when using observed RE to estimate RP (r = 0.679). The higher correlation when using predicted vs. observed RE is a concern because it indicates an interdependency between predicted RP and predicted RE that is needed to predict RP with a higher precision. These internal offsetting errors create an apparent overall adequacy of nutrition modeling that is elusive, thus potentially destabilizing the predictability of nutrition models when submodels are changed independently. In part, the unsatisfactory prediction of RP from observed RE might be related to the fact that body fat has a caloric value that is 1.65 times greater than body protein and the body deposition of fat increases exponentially as an animal matures, whereas body deposition of protein tends to plateau. Thus, body fat is more influential than body protein in determining RE, and inaccuracies in measuring body protein will be reflected in the RP comparison but suppressed in the RE calculation. The second concern is related to the disconnection when predicting partial efficiency of use of metabolizable energy for growth (kG) using the proportion of RE deposited as protein—carcass approach—vs. using the concentration of metabolizable energy of the diet—diet approach. The culprit of this disconnection might be related to how energy losses that are associated with supporting energy-expending processes (HiEv) are allocated between these approaches. When computing kG, the diet approach likely assigns the HiEv to the RE pool, whereas the carcass approach ignores the HiEV, assigning it to the overall heat production that is used to support the tissue metabolism. Opportunities exist for improving the California Net Energy System regarding the relationships of RE and RP in computing the requirements for energy and protein by growing cattle, but procedural changes might be needed such as increased accuracy in the determination of body composition and better partitioning of energy.


2010 ◽  
Vol 104 (1) ◽  
pp. 56-66 ◽  
Author(s):  
K. J. Shingfield ◽  
M. R. F. Lee ◽  
D. J. Humphries ◽  
N. D. Scollan ◽  
V. Toivonen ◽  
...  

Based on the potential benefits to human health, there is interest in developing sustainable nutritional strategies to enhance the concentration of long-chainn-3 fatty acids in ruminant-derived foods. Four Aberdeen Angus steers fitted with rumen and duodenal cannulae were used in a 4 × 4 Latin square experiment with 21 d experimental periods to examine the potential of fish oil (FO) in the diet to enhance the supply of 20 : 5n-3 and 22 : 6n-3 available for absorption in growing cattle. Treatments consisted of total mixed rations based on maize silage fed at a rate of 85 g DM/kg live weight0·75/d containing 0, 8, 16 and 24 g FO/kg diet DM. Supplements of FO reduced linearly (P < 0·01) DM intake and shifted (P < 0·01) rumen fermentation towards propionate at the expense of acetate and butyrate. FO in the diet enhanced linearly (P < 0·05) the flow oftrans-16 : 1,trans-18 : 1,trans-18 : 2, 20 : 5n-3 and 22 : 6n-3, and decreased linearly (P < 0·05) 18 : 0 and 18 : 3n-3 at the duodenum. Increases in the flow oftrans-18 : 1 were isomer dependent and were determined primarily by higher amounts oftrans-11 reaching the duodenum. In conclusion, FO alters ruminal lipid metabolism of growing cattle in a dose-dependent manner consistent with an inhibition of ruminal biohydrogenation, and enhances the amount of long-chainn-3 fatty acids at the duodenum, but the increases are marginal due to extensive biohydrogenation in the rumen.


1975 ◽  
Vol 105 (12) ◽  
pp. 1584-1591 ◽  
Author(s):  
G. N. Biddle ◽  
J. L. Evans ◽  
J. R. Trout

2018 ◽  
Author(s):  
T. M. Winders ◽  
B. M. Boyd ◽  
F. H. Hilscher ◽  
R S. Stowell ◽  
S. C. Fernando ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document