Capillary Rheometry of Carbon-Black-Filled Butadiene—Acrylonitrile Copolymers

1975 ◽  
Vol 48 (4) ◽  
pp. 615-622 ◽  
Author(s):  
N. Nakajima ◽  
E. A. Collins

Abstract Capillary rheometry of carbon-black-filled butadiene—acrylonitrile copolymers at 125°C was performed over a wide shear rate range. The data were corrected for pressure loss in the barrel and at the capillary entrance, and for the non-Newtonian velocity profile (Rabinowitsch correction). No appreciable effect of pressure on viscosity was observed. The die swell values were very small, 1.1–1.4. This fact and the shape of the plots of shear stress vs. shear rate imply the presence of a particulate structure, which is probably built by carbon black surrounded with bound rubber. Unlike the behavior of raw amorphous elastomers, the steady-shear viscosity, the dynamic complex viscosity, and the viscosity calculated from tensile stress-strain behavior were significantly different from each other. That is, the capillary flow data indicated an alteration of the structure towards strain softening, and the tensile stress-strain behavior showed strain hardening, indicating retention of the structure up to the yield point. In the dynamic measurement, being conducted at very small strain, the structure is least disturbed. With unfilled elastomers essentially the same deformational mechanism was believed to be responsible in these three measurements, because the results can be expressed by a single master curve.

1978 ◽  
Vol 51 (2) ◽  
pp. 322-334 ◽  
Author(s):  
N. Nakajima ◽  
H. H. Bowerman ◽  
E. A. Collins

Abstract Various viscoelastic measurements including dynamic mechanical measurements in tension at 110 Hz from −60–160°C, tensile stress relaxation measurements with 100% elongation at 25, 54, and 98°C, capillary flow measurements at 70, 100, and 125°C, and high-speed tensile stress-strain measurements carried to break at 25, 56, and 98°C were performed on four samples of carbon-black-filled butadiene—acrylonitrile copolymers. All the data were treated with the same equation for time-temperature conversion. The capillary viscosity—shear rate curves were significantly lower than the complex viscosity—angular frequency curves, indicating “strain softening” with extrusion. The viscosity was estimated from the stress-strain relationship at the yield point. The viscosity as a function of the strain rate is significantly higher than the complex viscosity as a function of angular frequency, indicating “strain hardening” with extension. The strain softening and strain hardening are attributable to the structural changes upon deformation of the carbon-black-filled elastomers. With the unfilled elastomers, neither strain softening nor strain hardening were observed in similar measurements.


1973 ◽  
Vol 46 (2) ◽  
pp. 417-424 ◽  
Author(s):  
N. Nakajima ◽  
H. H. Bowerman ◽  
E. A. Collins

Abstract With four samples of butadiene-acrylonitrile copolymers the following viscoelastic measurements have been performed: dynamic mechanical measurements in tension at 110 Hz from −60 to 180° C, tensile stress relaxation measurements with 100 per cent elongation at 25, 54, and 97.5° C, capillary flow measurements at 70, 100, and 125° C, and high-speed tensile stress-strain measurements carried to break at 25, 54, and 97° C. All the data have been treated with the same equation for the time-temperature conversion. The complex viscosity-frequency curves calculated from the dynamic measurements were found to be in good agreement with the capillary viscosity-shear rate curves. From the stress-strain relationship at the yield point the viscosity is estimated; such viscosity as a function of the strain rate is similar to the viscosity-shear rate curve. Good agreement was found with some samples. The elongation to break may be predicted with some samples from the treatment of stress relaxation data together with steady shear flow data.


1987 ◽  
Vol 60 (4) ◽  
pp. 761-780 ◽  
Author(s):  
N. Nakajima ◽  
J. J. Scobbo ◽  
E. R. Harrell

Abstract Four NBR's and 2 SBR's with 40 phr carbon black and one SBR with 56 phr carbon black were characterized in both tensile stress-strain behavior and small-strain dynamic-shear behavior. The room temperature tensile stress-strain behavior was determined at strain rates of 0.00690, 0.0187, 0.0975, 0.0162, and 0.253 s−1. For dynamic-shear observations, loss and storage moduli were used to calculate the complex viscosity-frequency curve at small deformations and frequencies of 0.1 to 100 rad/s. Also, these data from tensile and shear experiments were compared with previous data from a capillary rheometer, high-speed tensile tester, and oscillatory tensile tester. Strain-time correspondence was found applicable to large-deformation tensile data up to the yield point. The formation of an anisotropic aggregate density in elongational deformation explains the higher viscosity and modulus for tensile behavior relative to small-strain shear behavior at similar conditions. In shear deformation and flow, the formation of an anisotropic density of aggregates does not seem to occur appreciably.


Author(s):  
R.N. Dass ◽  
S.C. Yen ◽  
V.K. Puri ◽  
B.M. Das ◽  
M.A. Wright

1991 ◽  
Vol 239 ◽  
Author(s):  
Paul D. Garrett ◽  
Brian K. Daniels

ABSTRACTFundamental mechanical properties of a-C:H (amorphous or “diamond-like” carbon, DLC) thin film coatings have been investigated. Coatings were deposited by a methane-argon RF plasma on polycarbonate films. Tensile stress-strain behavior of the coated polymer was studied using an extensometer to monitor strain. The differences in moduli between uncoated and coated samples were used to calculate apparent coating moduli, which varied from 1 GPA to 82 GPa. The mode of failure was observed via in-situ optical microscopy during deformation. Intrinsic bond strength of the coating/substrate interface was estimated from crack spacings in the deformed coating.


1991 ◽  
Vol 64 (2) ◽  
pp. 234-242
Author(s):  
R. F. Bauer ◽  
A. H. Crossland

Abstract Properties of the individual phases in a 70/30 carbon-black-loaded BR/NR blend could be successfully resolved using large deformation stress-strain modelling. Since the dispersed NR phase of the example had a lower modulus than the continuous BR phase, the interaction between the blend phases could be modelled by a simple parallel coupling arrangement. The stress behavior of each individual carbon-black-loaded polymer phase was then determined with respect to strain using a specially derived stress-strain relationship. The blend components also have to be characterized with respect to state-of-cure by empirically establishing how the parameters in the stress-strain relationship vary with respect to cure. The properties of the phases in the blend are then determined by finding the combination of component parameters which precisely reproduce the stress-strain behavior of the blend. In the demonstration example of this paper, there was evidence of a significant amount of curative migration between phases during the vulcanization process.


1974 ◽  
Vol 47 (2) ◽  
pp. 318-332 ◽  
Author(s):  
N. Nakajima ◽  
E. A. Collins ◽  
H. H. Bowerman

Abstract A master curve scheme for small and large deformations was developed for tensile stress-strain behavior of butadiene—acrylonitrile uncrosslinked elastomers. Measurements were carried out at strain rates of 267 to 26,700 per cent/sec at temperatures of 25 to 97° C.


1974 ◽  
Vol 47 (2) ◽  
pp. 307-317 ◽  
Author(s):  
H. H. Bowerman ◽  
E. A. Collins ◽  
N. Nakajima

Abstract A high-speed, tensile-testing device was used to determine the stress—strain behavior of uncompounded butadiene—acrylonitrile copolymers over a range of temperatures and deformation rates. The strain rates were varied from 267 to 26,700 per cent/sec and the temperature was varied from 25 to 97° C. The high-speed tester was also used for stress—relaxation measurements by applying the strain nearly instantly in conformity with theoretical requirements in order to obtain the short time behavior. The WLF equation was obtained from the stress—relaxation data and then used to reduce the ultimate properties to one temperature over four decades of the strain rates. The ultimate properties could be represented by a failure envelope similar to those obtained for vulcanizates.


Sign in / Sign up

Export Citation Format

Share Document