A Method to Resolve the Properties of Individual Phases in Carbon-Black-Loaded Elastomer Blends

1991 ◽  
Vol 64 (2) ◽  
pp. 234-242
Author(s):  
R. F. Bauer ◽  
A. H. Crossland

Abstract Properties of the individual phases in a 70/30 carbon-black-loaded BR/NR blend could be successfully resolved using large deformation stress-strain modelling. Since the dispersed NR phase of the example had a lower modulus than the continuous BR phase, the interaction between the blend phases could be modelled by a simple parallel coupling arrangement. The stress behavior of each individual carbon-black-loaded polymer phase was then determined with respect to strain using a specially derived stress-strain relationship. The blend components also have to be characterized with respect to state-of-cure by empirically establishing how the parameters in the stress-strain relationship vary with respect to cure. The properties of the phases in the blend are then determined by finding the combination of component parameters which precisely reproduce the stress-strain behavior of the blend. In the demonstration example of this paper, there was evidence of a significant amount of curative migration between phases during the vulcanization process.

1990 ◽  
Vol 63 (5) ◽  
pp. 779-791 ◽  
Author(s):  
R. F. Bauer ◽  
A. H. Crossland

Abstract The unique stress-strain behavior of a carbon-black-loaded elastomer is due to the presence of a rigid, particulate phase, but also to the interaction of the elastomer chains with the filler. It is postulated that this interaction takes the form of adsorption on the filler-particle surface, which results in trapped entanglements. Upon deformation, the trapped chains are aligned parallel to the axis of stress. Thus, a practical stress-strain relationship could be developed which is capable to model the stress-strain behavior of compounds over the full range of extensions up to break. The analysis of a highly prestrained carbon-black-loaded NR compound in which the entanglement effect had been mechanically destroyed, demonstrated that the “sea-island” (SIP) coupling arrangement is most suitable for accounting for the interaction effect of the elastomer and carbon black. For moderately prestrained carbon-black-loaded NR and BR compounds a good fit of theory to experiment is obtained for a combination of the SIP coupling arrangement and the specially derived stress-strain relationship. Thus, a practical method is available for describing the deformation of carbon-black-loaded elastomers and for the modelling of carbon-black-loaded elastomer blends.


1975 ◽  
Vol 48 (4) ◽  
pp. 615-622 ◽  
Author(s):  
N. Nakajima ◽  
E. A. Collins

Abstract Capillary rheometry of carbon-black-filled butadiene—acrylonitrile copolymers at 125°C was performed over a wide shear rate range. The data were corrected for pressure loss in the barrel and at the capillary entrance, and for the non-Newtonian velocity profile (Rabinowitsch correction). No appreciable effect of pressure on viscosity was observed. The die swell values were very small, 1.1–1.4. This fact and the shape of the plots of shear stress vs. shear rate imply the presence of a particulate structure, which is probably built by carbon black surrounded with bound rubber. Unlike the behavior of raw amorphous elastomers, the steady-shear viscosity, the dynamic complex viscosity, and the viscosity calculated from tensile stress-strain behavior were significantly different from each other. That is, the capillary flow data indicated an alteration of the structure towards strain softening, and the tensile stress-strain behavior showed strain hardening, indicating retention of the structure up to the yield point. In the dynamic measurement, being conducted at very small strain, the structure is least disturbed. With unfilled elastomers essentially the same deformational mechanism was believed to be responsible in these three measurements, because the results can be expressed by a single master curve.


2005 ◽  
Vol 874 ◽  
Author(s):  
H. Jerry Qi ◽  
Christine Ortiz ◽  
Mary C. Boyce

AbstractMany proteins have been experimentally observed to exhibit a force-extension behavior with a characteristic repeating pattern of a nonlinear rise in force with imposed displacement to a peak, followed by a significant force drop upon reaching the peak (a “saw-tooth” profile) due to successive unfolding of modules during extension. This behavior is speculated to play a governing role in biological and mechanical functions of natural materials and biological networks composed of assemblies of such protein molecules. In this paper, a constitutive model for the finite deformation stress-strain behavior of crosslinked networks of modular macromolecules is developed. The force-extension behavior of the individual modular macromolecule is represented using the Freely Jointed Chain (FJC) statistical mechanics model together with a two-state theory to capture unfolding. The single molecule behavior is then incorporated into a formal continuum mechanics framework to construct a constitutive model. Simulations illustrate a relatively smooth “yield”-like stress-strain behavior of these materials due to activate unfolding in these microstructures.


Polymer ◽  
2006 ◽  
Vol 47 (1) ◽  
pp. 319-329 ◽  
Author(s):  
J. Yi ◽  
M.C. Boyce ◽  
G.F. Lee ◽  
E. Balizer

Author(s):  
Xiuhan Yang ◽  
Sai Vanapalli

Several of the geotechnical structures constructed with unsaturated soils undergo a large deformation prior to reaching failure conditions (e.g. progressive failure of a soil slope). During this process, the shear stress in soils typically increases initially and then reduces with an increase in the shear strain. The prediction of the stress-strain relationship is critical for reasonable interpretation of the mechanical behavior of those geo-structures that undergo large deformation. This paper introduces a model based on the disturbed state concept (DSC) to predict the variation of shear stress in unsaturated soils during strain-softening process under consolidated drained triaxial compression condition. In this model, the apparent stress-strain relationship is formulated as a weighted average of a hyperbolic hardening response extending the pre-peak state stress-strain curve and a linear response extending the critical state stress-strain curve with an assumed disturbance function as the weight. The prediction procedure is described in detail and the proposed model is validated using several sets of published data on unsaturated soils varying from coarse- to fine-grained soils. Finally, a comprehensive error analysis is undertaken based on an index of agreement approach.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
N. K. Sharma ◽  
M. D. Sarker ◽  
Saman Naghieh ◽  
Daniel X. B. Chen

Bone is a complex material that exhibits an amount of plasticity before bone fracture takes place, where the nonlinear relationship between stress and strain is of importance to understand the mechanism behind the fracture. This brief presents our study on the examination of the stress–strain relationship of bovine femoral cortical bone and the relationship representation by employing the Ramberg–Osgood (R–O) equation. Samples were taken and prepared from different locations (upper, middle, and lower) of bone diaphysis and were then subjected to the uniaxial tensile tests under longitudinal and transverse loading conditions, respectively. The stress–strain curves obtained from tests were analyzed via linear regression analysis based on the R–O equation. Our results illustrated that the R–O equation is appropriate to describe the nonlinear stress–strain behavior of cortical bone, while the values of equation parameters vary with the sample locations (upper, middle, and lower) and loading conditions (longitudinal and transverse).


1999 ◽  
Vol 15 (4) ◽  
pp. 177-184
Author(s):  
Ming-Lou Liu

AbstractThe stress-strain relationship of the sand and asphalt concrete materials is one of the most important research subjects in the past, and many conctitutive laws for these materials have been proposed in the last two decades. In this study, the Vermeer plasticity model is modified and used to predict the behavior of the sand and asphalt concrete materials under different stress path conditions. The results show that the predictions and test results agree well under different stress path conditions. However, the orignal Vermeer model can not predict the stress-strain behavior of the asphalt concrete. Finally, the modified Vermeer plasticity model is incorporated with the pavement rutting model to predict the rut depth of pavement structure under traffic loadings.


Sign in / Sign up

Export Citation Format

Share Document