Stress Relaxation Mechanisms in Rubbers Reinforced with Carbon Blacks

1972 ◽  
Vol 45 (1) ◽  
pp. 82-93 ◽  
Author(s):  
G. M. Bartenev ◽  
N. M. Lyalina

Abstract 1. In vulcanized rubbers containing blacks a multi-stage mechanism for stress relaxation was observed. It was discovered that the stress relaxation process consists of five fundamental processes: the first three relaxation processes, related to the slow stages of physical relaxation within the bulk of the rubber, have no connection with the fillers (“soft” domains); the fourth process has to do with the relaxation in the black-rubber domain; the fifth process involves the chemical relaxation of vulcanizates. 2. The fundamental mechanisms of the first 3 relaxation processes in the soft domains have the same activation energy values and the same segmental mechanism as the rearranged domains found in supermolecular weight structures, which are also present in unfilled vulcanizates. 3. In the investigated stress range of up to 200% elongation, the activation energy for the first 3 relaxation processes in the soft domains of filled vulcanizates is not a function of the deformation strain, whereas the activation energy of the fourth relaxation process in the black-rubber domains of filled rubbers is a function of the deformation and of the filler content. For these reasons, rubber loaded with carbon blacks, in contrast to unfilled rubbers, possess the typical nonlinearity of viscoelastic materials. 4. The activation energies of the relaxation processes in the black-rubber domains decrease in a linear fashion with the value for the initial tensile stress in filled vulcanizates, and decrease in like manner for vulcanizates containing different proportions of fillers. The kinetic units, determined from the activation energies of these processes, appeared to be segments of chains with activation energies of up to 40% more than the activation energies of the physical relaxation processes in the soft domains. The other kinetic units of the processes proved to be black particles, the dimensions of which were calculated from the values for the coefficients in the formula for relaxation time.

2009 ◽  
Vol 283-286 ◽  
pp. 533-538 ◽  
Author(s):  
Kazumasa Yamada ◽  
N. Shinagawa ◽  
M. Sogame ◽  
I.A. Figueroa ◽  
Hywel A. Davies ◽  
...  

The aim of this research is to clarify a quantitative evaluation in the structural relaxation processes focusing on the activation energy in Cu based amorphous alloys. The activation energy for structural relaxation process in a metal type amorphous CuHfTi ternary alloys, with cross sections of typically 0.03 mm x 2.0 mm, prepared by chill-block melt spinning has been investigated by Differential Scanning Calorimetry (DSC) with a cyclically heating technique. Activation energies for structural relaxation with a spatial quantity in amorphous materials have been discussed by use of a relaxed ratio function that depends on annealing temperature and time. In the present work, the distributions for the Activation Energy Spectrum (AES) were observed almost 152 kJmol-1 (1.58 eV). Another result has been also established that the “reversible” AES model energy distribution though the cyclically structure relaxation occurs even in amorphous Cu60Hf20Ti20 alloy.


2001 ◽  
Vol 16 (4) ◽  
pp. 938-944 ◽  
Author(s):  
V. L. Tellkamp ◽  
S. Dallek ◽  
D. Cheng ◽  
E. J. Lavernia

A nanostructured 5083 Al–Mg alloy powder was subjected to various thermal heat treatments in an attempt to understand the fundamental mechanisms of recovery, recrystallization and grain growth as they apply to nanostructured materials. A low-temperature stress relaxation process associated with reordering of the grain boundaries was found to occur at 158 °C. A bimodal restructuring of the grains occurred at 307 °C for the unconstrained grains and 381 °C for the constrained grains. An approximate activation energy of 5.6 kJ/mol was found for the metastable nanostructured grains, while an approximate activation energy of 142 kJ/mol was found above the restructuring temperature.


1958 ◽  
Vol 36 (8) ◽  
pp. 1135-1137 ◽  
Author(s):  
P. White ◽  
G. C. Benson

Ultrasonic absorption has been measured in pure butyric acid by a pulse technique from 0 ° to 40 °C. and values of the relaxation frequency obtained. The activation energy of the relaxation process is shown to be 1.1 kcal./mole. These results are compared with published values for acetic and propionic acids and possible relaxation processes are discussed.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2152
Author(s):  
Maha Zaghdoudi ◽  
Anja Kömmling ◽  
Matthias Jaunich ◽  
Dietmar Wolff

To improve the predictive capability of long-term stress relaxation of elastomers during thermo-oxidative ageing, a method to separate reversible and irreversible processes was adopted. The separation is performed through the analysis of compression set after tempering. On the basis of this separation, a numerical model for long-term stress relaxation during homogeneous ageing is proposed. The model consists of an additive contribution of physical and chemical relaxation. Computer simulations of compression stress relaxation were performed for long ageing times and the results were validated with the Arrhenius treatment, the kinetic study and the time-temperature superposition technique based on experimental data. For chemical relaxation, two decay functions are introduced each with an activation energy and a degradative process. The first process with the lower activation energy dominates at lower ageing times, while the second one with the higher activation energy at longer ageing times. A degradation-rate based model for the evolution of each process and its contribution to the total system during homogeneous ageing is proposed. The main advantage of the model is the possibility to quickly validate the interpolation at lower temperatures within the range of slower chemical processes without forcing a straight-line extrapolation.


1946 ◽  
Vol 19 (4) ◽  
pp. 1178-1192 ◽  
Author(s):  
M. D. Stern ◽  
A. V. Tobolsky

Abstract Polysulfide rubbers of various internal structures have been investigated by measurements of continuous and intermittent relaxation of stress and by creep under constant load at temperatures between 35° C and 120° C. Continuous stress relaxation measurements indicate that these rubbers obey approximately the simple Maxwellian law of relaxation of stress, which indicates that one definite type of bond in the network structure is responsible for stress decay. The activation energy for the relaxation process in each of the polysulfide rubbers is nearly the same, indicating that the same type of bond is responsible for the relaxation behavior of all the polysulfides investigated. In contrast to hydrocarbon rubbers, oxygen is not the cause of high temperature relaxation in polysulfide rubbers, nor does heating in air at moderate temperatures for times comparable to the relaxation time produce changes in physical properties as determined by modulus or by appearance of the samples. Several possibilities regarding the mechanism of the relaxation process and the type of bond involved are considered in the light of the experimental results.


2010 ◽  
Vol 297-301 ◽  
pp. 702-707
Author(s):  
Kazumasa Yamada ◽  
N. Miura ◽  
A. Yamamoto ◽  
I.A. Figueroa ◽  
Hywel A. Davies ◽  
...  

The aim of this research is to clarify a quantitative evaluation in the structural relaxation processes focusing on the activation energy on the addition of B to Cu-based amorphous alloys. The activation energy for structural relaxation process in a metal type amorphous CuHfTi ternary and CuHfTiB quaternary alloys, with cross sections of typically 0.03 mm x 2.0 mm, prepared by chill-block melt spinning has been investigated by Differential Scanning Calorimetry (DSC) with a cyclically heating technique. Activation energies for structural relaxation with a spatial quantity in amorphous materials have been discussed by use of a total relaxed ratio function that depends on annealing temperature and time. In the present work on CuHfTi ternary and CuHfTiB quaternary alloys, the distributions for the Activation Energy Spectrum (AES) by calculation with derivative-type relaxed ratio function were observed almost 160 kJmol-1, whereas in difference for shape only in the CuHfTi-B3% quaternary alloy. Another result has been also established that the ‘reversible’ AES model energy distribution though the cyclically structure relaxation occurs even in amorphous CuHfTiB alloy system.


2003 ◽  
Vol 795 ◽  
Author(s):  
Soo-Jung Hwang ◽  
Young-Chang Joo ◽  
Junichi Koike

ABSTRACTDeformation mechanisms of electroplated Cu thin films on TaN/SiO2/Si were investigated by performing isothermal annealing above 200 °C. Stress relaxation behavior during isothermal annealing was analyzed by curve fitting using exponential decay equations. During heating, fast relaxation and subsequent slow relaxation processes were observed. In contrast, during cooling, only slow relaxation process was observed. Among possible mechanisms for stress relaxation, diffusion creep was found to be the most plausible mechanism based on the obtained values of the activation energy. It was suggested that the slow relaxation process observed both in the heating and in the cooling processes was attributed to a grain-boundary diffusion creep. On the other hand, the fast relaxation process observed during heating was attributed to a surface-diffusion controlled mechanism. The surface diffusion mechanism was considered to be characteristic to Cu thin films that did not form stable surface oxide.


Author(s):  
А. А. Горват ◽  
В. М. Кришеник ◽  
А. Е. Кріштофорій ◽  
В. В. Мінькович ◽  
О. А. Молнар

2015 ◽  
Vol 8 (3) ◽  
pp. 2176-2188 ◽  
Author(s):  
Keisham Nanao Singh

This article reports on the Dielectric Relaxation Studies of two Liquid Crystalline compounds - 7O.4 and 7O.6 - doped with dodecanethiol capped Silver Nanoparticles. The liquid crystal molecules are aligned homeotropically using CTAB. The low frequency relaxation process occurring above 1 MHz is fitted to Cole-Cole formula using the software Dielectric Spectra fit. The effect of the Silver Nanoparticles on the molecular dipole dynamics are discussed in terms of the fitted relaxation times, Cole-Cole distribution parameter and activation energy. The study indicate a local molecular rearrangement of the liquid crystal molecules without affecting the order of the bulk liquid crystal molecules but these local molecules surrounding the Silver Nanoparticles do not contribute to the relaxation process in the studied frequency range. The observed effect on activation energy suggests a change in interaction between the nanoparticles/liquid crystal molecules.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


Sign in / Sign up

Export Citation Format

Share Document