scholarly journals Effect of cold plasma treatment on microbial load reduction and physicochemical properties of turmeric

2020 ◽  
Vol 17 (99) ◽  
pp. 153-161
Author(s):  
Farideh sanaee ◽  
Seyed Ali Mortazavi ◽  
farideh tabatabaei yazdi ◽  
Fakhri Shahidi ◽  
◽  
...  
Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


Author(s):  
Neda Mollakhalili-Meybodi ◽  
Mojtaba Yousefi ◽  
Amene Nematollahi ◽  
Nasim Khorshidian
Keyword(s):  

2014 ◽  
Vol 118 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Nrusimha Nath Misra ◽  
Kevin M. Keener ◽  
Paula Bourke ◽  
Jean-Paul Mosnier ◽  
Patrick J. Cullen

2015 ◽  
Vol 167 ◽  
pp. 12-17 ◽  
Author(s):  
Christian Hertwig ◽  
Kai Reineke ◽  
Jörg Ehlbeck ◽  
Belgin Erdoğdu ◽  
Cornelia Rauh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document