Morphology, Properties and Application of Iron Oxide/Polycaprolactone Nanocomposites

2021 ◽  
Vol 43 (1) ◽  
pp. 34-34
Author(s):  
Khalid Saeed Khalid Saeed ◽  
Noshi Khan Noshi Khan ◽  
Tariq Shah and Muhammad Sadiq Tariq Shah and Muhammad Sadiq

Polycaprolactone (PCL) and Fe2O3/PCL nanocomposites sheets/films were prepared by solution casting method. The morphological study illustrated that Fe2O3 nanoparticles were dispersed and embedded well within the PCL matrix. The size of Fe2O3 nanoparticles were below 250 nm. The thermal stability of Fe2O3/PCL nanocomposites was lower than neat PCL, which might be due to Fe2O3 (act as catalyst during the thermal degradation of PCL). The differential scanning calorimetry (DSC) analyses show that the crystallization temperature of the nanocomposites was slightly enhanced as compared to neat PCL. The polarized optical microscopy (POM) analyses showed that the size of Fe2O3/PCL nanocomposites spherulites were smaller than neat PCL. The photodegradation study presented that the nanocomposites photodegraded higher quantity of rhodamine B dye as compared to neat PCL. The neat PCL degraded about 24 and 72% while Fe2O3 (6 wt%)/PCL nanocomposites degraded about 72 and 98% of dye within 2 and 10 h, respectively.

2021 ◽  
Vol 43 (1) ◽  
pp. 34-34
Author(s):  
Khalid Saeed Khalid Saeed ◽  
Noshi Khan Noshi Khan ◽  
Tariq Shah and Muhammad Sadiq Tariq Shah and Muhammad Sadiq

Polycaprolactone (PCL) and Fe2O3/PCL nanocomposites sheets/films were prepared by solution casting method. The morphological study illustrated that Fe2O3 nanoparticles were dispersed and embedded well within the PCL matrix. The size of Fe2O3 nanoparticles were below 250 nm. The thermal stability of Fe2O3/PCL nanocomposites was lower than neat PCL, which might be due to Fe2O3 (act as catalyst during the thermal degradation of PCL). The differential scanning calorimetry (DSC) analyses show that the crystallization temperature of the nanocomposites was slightly enhanced as compared to neat PCL. The polarized optical microscopy (POM) analyses showed that the size of Fe2O3/PCL nanocomposites spherulites were smaller than neat PCL. The photodegradation study presented that the nanocomposites photodegraded higher quantity of rhodamine B dye as compared to neat PCL. The neat PCL degraded about 24 and 72% while Fe2O3 (6 wt%)/PCL nanocomposites degraded about 72 and 98% of dye within 2 and 10 h, respectively.


2021 ◽  
Vol 43 (1) ◽  
pp. 34-34
Author(s):  
Khalid Saeed Khalid Saeed ◽  
Noshi Khan Noshi Khan ◽  
Tariq Shah and Muhammad Sadiq Tariq Shah and Muhammad Sadiq

Polycaprolactone (PCL) and Fe2O3/PCL nanocomposites sheets/films were prepared by solution casting method. The morphological study illustrated that Fe2O3 nanoparticles were dispersed and embedded well within the PCL matrix. The size of Fe2O3 nanoparticles were below 250 nm. The thermal stability of Fe2O3/PCL nanocomposites was lower than neat PCL, which might be due to Fe2O3 (act as catalyst during the thermal degradation of PCL). The differential scanning calorimetry (DSC) analyses show that the crystallization temperature of the nanocomposites was slightly enhanced as compared to neat PCL. The polarized optical microscopy (POM) analyses showed that the size of Fe2O3/PCL nanocomposites spherulites were smaller than neat PCL. The photodegradation study presented that the nanocomposites photodegraded higher quantity of rhodamine B dye as compared to neat PCL. The neat PCL degraded about 24 and 72% while Fe2O3 (6 wt%)/PCL nanocomposites degraded about 72 and 98% of dye within 2 and 10 h, respectively.


2015 ◽  
Vol 731 ◽  
pp. 578-583
Author(s):  
Ming Jun Niu ◽  
Rui Xia Duan ◽  
Li Xia Wang ◽  
Xiao Qing Shen ◽  
Kai Guo ◽  
...  

PLLA / OMMT composite films were prepared through solution casting method, in which chloroform was used as solvent. Mechanical, thermal and crystallization properties of neat PLLA and PLLA / OMMT composites films were investigated as well as morphology through scanning electron microscope. It was shown that tensile strength of PLLA / OMMT composite films gradually increased with increasing OMMT content, but reduced when more filler were added. Loading of 2wt% of OMMT seemed to benifit PLLA in tensile strength most. With the increase of montmorillonite content, the elongation at break of PLLA decreased first and then reached to a steady level. When compared with pure PLLA, the composite system showed decreased spherulite size, lower degree of order and an increase in the number of grains. Thermal analysis has proved that the addition of OMMT greatly enhanced crystability and thermal stability of PLLA.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2018
Author(s):  
Muhammad Samsuri ◽  
Ihsan Iswaldi ◽  
Purba Purnama

Stereocomplexation is one of several approaches for improving polylactide (PLA) properties. The high molecular weight of poly L-lactide (PLLA) and poly D-lactide (PDLA) homopolymers are a constraint during the formation of stereocomplex PLAs (s-PLAs). The presence of s-PLA particles in PLA PLLA/PDLA blends can initiate the formation of s-PLA crystalline structures. We used the solution casting method to study the utilization of s-PLA materials from high molecular weight PLLA/PDLA blends for increasing s-PLA formation. The s-PLA particles initiated the formation of high molecular weight PLLA/PDLA blends, obtaining 49.13% s-PLA and 44.34% of the total crystalline fraction. In addition, the mechanical properties were enhanced through s-PLA crystalline formation and the increasing of total crystallinity of the PLLA/PDLA blends. The s-PLA particles supported initiation for s-PLA formation and acted as a nucleating agent for PLA homopolymers. These unique characteristics of s-PLA particles show potential to overcome the molecular weight limitation for stereocomplexation of PLLA/PDLA blends.


2021 ◽  
Vol 317 ◽  
pp. 426-433
Author(s):  
Siti Nurhaziqah Abd Majid ◽  
Afiqah Qayyum Ishak ◽  
Nik Aziz Nik Ali ◽  
Muhamad Zalani Daud ◽  
Hasiah Salleh

The development of biopolymer electrolytes based on methylcellulose (MC) has been accomplished by incorporating ammonium bromide (NB) to the polymer-salt system. The biopolymer electrolytes were prepared via solution-casting method. The conductivity and permittivity characteristics of the material were studied. The biopolymer-salt complex formation have been analysed through Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The conductivity of the sample was measured by EIS HIOKI. Upon addition of 20 wt.% of NB, highest conductivity of 3.25×10-4 μScm-1 was achieved at ambient temperature. The temperature dependence of the biopolymer electrolytes exhibit Arrhenius behaviour. This result had been further proven in FTIR study.


Sign in / Sign up

Export Citation Format

Share Document