Preparation and Properties of Poly(L-Lactid Acid)/Organo-Montmorillonite Composites by Solution Casting Method

2015 ◽  
Vol 731 ◽  
pp. 578-583
Author(s):  
Ming Jun Niu ◽  
Rui Xia Duan ◽  
Li Xia Wang ◽  
Xiao Qing Shen ◽  
Kai Guo ◽  
...  

PLLA / OMMT composite films were prepared through solution casting method, in which chloroform was used as solvent. Mechanical, thermal and crystallization properties of neat PLLA and PLLA / OMMT composites films were investigated as well as morphology through scanning electron microscope. It was shown that tensile strength of PLLA / OMMT composite films gradually increased with increasing OMMT content, but reduced when more filler were added. Loading of 2wt% of OMMT seemed to benifit PLLA in tensile strength most. With the increase of montmorillonite content, the elongation at break of PLLA decreased first and then reached to a steady level. When compared with pure PLLA, the composite system showed decreased spherulite size, lower degree of order and an increase in the number of grains. Thermal analysis has proved that the addition of OMMT greatly enhanced crystability and thermal stability of PLLA.

2021 ◽  
Vol 2120 (1) ◽  
pp. 012004
Author(s):  
May Teng Hooi ◽  
Siew Wei Phang ◽  
Hui Ying Yow ◽  
Edmund David ◽  
Ning Xin Kim ◽  
...  

Abstract This paper presents the interaction comparison of poly(vinyl) alcohol (PVA) with hydroxyapatite derived from Spanish Mackerel (SM) and Whitefin Wolf Herring (WWH) bones, in different processing method. PVA filament and solution casting method illustrated higher crystallinity in the FTIR graph as compared to the PVA pellet and filament extrusion method. Besides, minimal interactions between PVA with glycerol and HAp was observed as well. PVA pellet and solution casting method portrait higher interaction as compared to the PVA filament and extrusion method. As for the HAp of SM and WWH, WWH had higher crystallinity and better cell adhesion with a higher Ca/P ratio while SM had relatively better mechanical strength with Ca/P ratio near to stoichiometric value. The loading of HAp (0, 2.5, 5, 10, 20, 30%) does not affect interactions of PVA/HAp composite in FTIR, and thermal properties in TGA. However, it caused an increase in crystallinity at low HAp loading and decreased at higher loading of HAp above 10%. Upon addition of HAp, tensile strength increased and elongation at break decreased. As the loading of HAp increased, both mechanical properties decreased. Scaffold with WWH composite possessed lower tensile strength and higher elongation at break than SM composite. The result of mechanical properties corresponded to the SEM result. ANOVA analysis justified the effect of HAp variations and loading on the mechanical properties of the composite was prominent.


2021 ◽  
Vol 302 ◽  
pp. 02001
Author(s):  
Melbi Mahardika ◽  
Mochamad Asrofi ◽  
Devita Amelia ◽  
Edi Syafri ◽  
Sanjay Mavinkere Rangappa ◽  
...  

Polyvinyl Alcohol (PVA) based biocomposite film with cellulose was successfully fabricated by the solution casting method. The cellulose fibers were obtained by extraction of durian peel using alkalization and bleaching treatments. These treated cellulose fibers were used for the fabrication of PVA-based biocomposites. The durian peel cellulose fibers were varied by 2%, 4%, 6%, and 8% in the PVA matrix. Tensile test and moisture resistance of biocomposites were evaluated. The 6% addition of cellulose fibers in biocomposites increases the tensile strength up to 54% (37 MPa) than pure PVA film (24 MPa). Conversely, it reduces the elongation at break of the biocomposite film. Meanwhile, the moisture resistance properties of the biocomposites increased with the addition of cellulose fibers. The tensile strength and moisture resistance of biocomposites have been increased due to the homogeneous dispersion of the cellulose fibers and PVA matrix. These biocomposites able to reduce the environmental impacts by utilizing residual lignocellulosic biomass.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Renbo Wei ◽  
Qian Xiao ◽  
Chenhao Zhan ◽  
Yong You ◽  
Xuefei Zhou ◽  
...  

AbstractBoron nitride (BN) coated with sulfonated poly-arylene ether nitrile (SPEN) (BN@SPEN) was used as additive to enhance the thermal conductivity of polyarylene ether nitrile. BN@SPEN was prepared by coating BN micro-platelets with SPEN through ultrasonic technology combined with the post-treatment bonding process. The prepared BN@SPEN was characterized by FTIR, TGA, SEM and TEM, which confirmed the successful coating of BN micro-platelets. The obtained BN@SPEN was introduced into the PEN matrix to prepare composite films by a solution casting method. The compatibility between BN and PEN matrix was studied by using SEM observation and rheology measurement. Furthermore, thermal conductivity of BN@SPEN/PEN films were carefully characterized. Thermal conductivity of BN@SPEN/PEN films was increased to 0.69 W/(m⋅K) at 20 wt% content of BN@SPEN, having 138% increment comparing with pure PEN.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 755
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Yongjun Xu ◽  
Zhaohua Jiang

In this work, poly(1-butene) (PB-1) composite films with multi-walled carbon nanotubes (MWCNT) were prepared by a solution casting method. The relationship between the dielectric properties and the crystal transformation process of the films was investigated. It was indicated that there were two crystal forms of I and II of PB-1 during the solution crystallization process. With the prolongation of the phase transition time, form II was converted into form I. The addition of the conductive filler (MWCNT) accelerated the rate of phase transformation and changed the nucleation mode of PB-1. The presence of crystal form I in the system increased the breakdown strength and the dielectric constant of the films and reduced the dielectric loss, with better stability. In addition, the dielectric constant and the dielectric loss of the MWCNT/PB-1 composite films increased with the addition of MWCNT, due to the interfacial polarization between MWCNT and PB-1 matrix. When the mass fraction of the MWCNT was 1.0%, the composite film had a dielectric constant of 43.9 at 25 °C and 103 Hz, which was 20 times that of the original film.


2015 ◽  
Vol 1113 ◽  
pp. 19-22 ◽  
Author(s):  
Mohd Salleh Shahrul Nizam ◽  
Norzila Mohd ◽  
Zarina Omar ◽  
Norkamruzita Saadon

The tensile properties of starch fiber (SF) and native starch (NS) filled polyvinyl alcohol were investigated in this study. Polyvinyl Alcohol (PVA) was blend with starch fiber as well as native starch. Prior to compounding process, PVA was plasticized with 30 phr glycerol as well as 10 phr distilled water. A solution casting method was used to prepare the SF-PPVA and NS-PPVA film sheet. Based on the tensile test results SF filled PVA recorded the highest tensile strength (20.015 MPa) as compared to NS filled PVA (12.302MPa). The tensile strength of the blends film was depending to the interfacial adhesion between matrixes in the blends. In spite of that, NS filled PVA have noted the highest elongation during the test. SF and NS played important role in affecting the blends matrix through disturbing the arrangement of continuous phase of PVA.


2013 ◽  
Vol 816-817 ◽  
pp. 276-279 ◽  
Author(s):  
Fang Fang Wang ◽  
Ya Jun Wang ◽  
Zhi Bo Ren

To meet the requirement of microelectronic industry, ceramic/polymer composite films made of CaCu3Ti4O12(CCTO) powder as filler and PVDF copolymer as matrix were prepared by solution casting method. The dielectric properties (DP) and morphology of the films were studied by impedance analyzer and scanning electron microscope (SEM) respectively. The dielectric constant could reach 23.96 and loss 0.1082 when mass fraction of CCTO is 50% at 100 Hz. SEM results show that CCTO particles dispersed well in the PVDF matrix. At last, three composite models were used to predict the dielectric constant of the composite films and it is proved that Yamada model fits the experimental data well.


RSC Advances ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 1554-1561 ◽  
Author(s):  
Feroz A. Mir ◽  
Adil Gani ◽  
K. Asokan

Composite films of imperatorin (a coumarin molecule) and poly vinyl alcohol (PVA) are prepared by a solution casting method.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. Somashekarappa ◽  
Y. Prakash ◽  
K. Hemalatha ◽  
T. Demappa ◽  
R. Somashekar

The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.


2021 ◽  
Vol 43 (1) ◽  
pp. 34-34
Author(s):  
Khalid Saeed Khalid Saeed ◽  
Noshi Khan Noshi Khan ◽  
Tariq Shah and Muhammad Sadiq Tariq Shah and Muhammad Sadiq

Polycaprolactone (PCL) and Fe2O3/PCL nanocomposites sheets/films were prepared by solution casting method. The morphological study illustrated that Fe2O3 nanoparticles were dispersed and embedded well within the PCL matrix. The size of Fe2O3 nanoparticles were below 250 nm. The thermal stability of Fe2O3/PCL nanocomposites was lower than neat PCL, which might be due to Fe2O3 (act as catalyst during the thermal degradation of PCL). The differential scanning calorimetry (DSC) analyses show that the crystallization temperature of the nanocomposites was slightly enhanced as compared to neat PCL. The polarized optical microscopy (POM) analyses showed that the size of Fe2O3/PCL nanocomposites spherulites were smaller than neat PCL. The photodegradation study presented that the nanocomposites photodegraded higher quantity of rhodamine B dye as compared to neat PCL. The neat PCL degraded about 24 and 72% while Fe2O3 (6 wt%)/PCL nanocomposites degraded about 72 and 98% of dye within 2 and 10 h, respectively.


Sign in / Sign up

Export Citation Format

Share Document