scholarly journals STATEMENT OF THE SECOND LAW OF THERMODYNAMICS ON THE BASIS OF THE POSTULATE OF NONEQUILIBRIUM

2019 ◽  
Vol 16 (32) ◽  
pp. 698-712
Author(s):  
Vladimir V. RYNDIN

Most physical laws are quantitative expressions of the philosophical laws of the conservation of matter and its properties of motion. The first law of thermodynamics (FLT) is an analytical expression of the law of conservation of motion when its shape changes. As for the second law of thermodynamics (SLT), it has not yet been clarified which property of matter does not change during the course of reversible processes and changes during the course of irreversible processes in an isolated system (IS). Hence, a large number of the SLT statements and an abundance of material to clarify these formulations. The author of the SLT is based on the “postulate of nonequilibrium”, according to which there is an objective property of matter - “nonequilibrium”, which characterizes the unequal distribution of matter and movement in space. All processes (reversible and irreversible) can proceed only in nonequilibrium systems. This leads to the only formulation of the second law of thermodynamics: when the reversible (ideal) processes occur in an isolated system, the nonequilibrium is preserved, and with the occurrence of irreversible (real) processes – decreases. When the system reaches an equilibrium state, the nonequilibrium disappears, and all processes cease. As a quantitative measure of the nonequilibrium of the system, we consider the maximum work that can be done when a nonequilibrium system transitions to an equilibrium state. The following quantities are used to calculate this work: “potential difference”, “entropy difference”, change in exergy. All these values decrease in the course of real (irreversible) processes in the isolated system and do not change in the course of reversible processes. As a result, a generalized expression of the SLT through the quantitative characteristics of the nonequilibrium of the system in the form of an inequality, which includes R. Claudius’s inequality for changing the entropy of an isolated system, is obtained.

2020 ◽  
Vol 17 (34) ◽  
pp. 998-1011
Author(s):  
Vladimir V RYNDIN

The postulate of nonequilibrium is at the heart of the second law of thermodynamics. According to this postulate, there is a real property of matter – “nonequilibrium,” which characterizes the uneven distribution of matter and motion in space. All processes (reversible and irreversible) can occur only in nonequilibrium systems. As a quantitative characteristic of the nonequilibrium of the system, the maximum work that can be performed during the transition of the nonequilibrium system to the equilibrium state is considered. The only formulation of the second law is given. When real (irreversible) processes occur, the nonequilibrium of the isolated system decreases, and in reversible processes, the nonequilibrium in the system of locally equilibrium subsystems does not change (the increment of one kind of the nonequilibrium entirely compensated by a decrease in the disequilibrium of some other kind). When the system reaches an equilibrium state, the disequilibrium disappears, and all processes cease. The article provides a calculated confirmation of the theoretical provisions of the concept of nonequilibrium and its mathematical apparatus by examples of determining the loss of the nonequilibrium of system when an isothermal mixing of dissimilar gases, and changes of nonequilibrium of system "pure solvent – solution" in the transition of part of the solvent in the solution. The mixing of the same gases leads to the Gibbs paradox, which is also considered in this paper. The concept of nonequilibrium was developed and the quantitative characteristics (measures) of nonequilibrium of the system were introduced allow to study nonequilibrium systems consisting of locally equilibrium subsystems in the sections of classical thermodynamics as simply as individual equilibrium systems.


Author(s):  
Anahita Imanian ◽  
Mohammad Modarres

Cumulative hazard and cumulative damage are important models for reliability and structural integrity assessment. This article reviews a previously developed thermodynamic entropy–based damage model and derives and demonstrates an equivalent reliability function. As such, a thermodynamically inspired approach to developing new definitions of cumulative hazard, cumulative damage, and life models of structures and components based on the second law of thermodynamics is presented. The article defines a new unified measure of damage in terms of energy dissipation associated with multiple interacting irreversible processes that represent the underlying failure mechanisms that cause damage and failure. Since energy dissipation leads to entropy generation in materials, it has been shown and experimentally demonstrated that the use of the total entropy generated in any degradation process is measurable and can ultimately be used to represent the time of failure of structures and components. This description therefore connects the second law of thermodynamics to the conventional models of reliability used in life assessment. Any variability in the entropic endurance to failure and uncertainties about the parameters of the entropic-based damage model lead to the time-to-failure distribution. In comparison with the conventional probabilistic reliability methods, deriving the reliability function in terms of the entropy generation can offer a general and more fundamental approach to representation of reliability. The entropic-based theory of damage and the equivalent reliability approach are demonstrated and confirmed experimentally by applying the complex interactive corrosion-fatigue degradation mechanism to samples of aluminum materials.


Author(s):  
Mark A. Rubin

The fact that certain “extraordinary” probabilistic phenomena — in particular, macroscopic violations of the second law of thermodynamics — have never been observed to occur can be accounted for by taking hard preclusion as a basic physical law, i.e. precluding from existence events corresponding to very small but nonzero values of quantum-mechanical weight. This approach is not consistent with the usual ontology of the Everett interpretation, in which outcomes correspond to branches of the state vector, but can be successfully implemented using a Heisenberg-picture-based ontology in which outcomes are encoded in transformations of operators. Hard preclusion can provide an explanation for biological evolution, which can in turn explain our subjective experiences of, and reactions to, “ordinary” probabilistic phenomena, and the compatibility of those experiences and reactions with what we conventionally take to be objective probabilities arising from physical laws.


Author(s):  
Saeed Shahsavari ◽  
Mehran Moradi

The second law of thermodynamics is one of the most important physical laws that has been extracted by different formulations. In this paper, a new approach to study different formulations of the second law is extracted based on the energy components of the system as well as introducing the independent and dependent energy components concepts. Also, two main formulations of classical thermodynamics, and also entropy from the perspective of general physics are discussed based on the energy components of the system for constant applied energy to the system in different conditions. Kelvin-Plank and Clausius formulations, as two main classical formulations, are all assertions about impossible processes. Considering the energy structure equation of the system, as an equation to formulate the performed process using activated energy components, it is shown that different formulations of the second law of thermodynamics represent the same concept in the perspective of the energy structure. Finally, a new general formulation to the second law, based on the energy structure of the system is extracted, and the equivalence as the other formulations is shown. The presented formulation is extracted based on the dependent and independent activated energy components, and in fact, shows all possible paths in the considered energy applying to the system.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Mohammad Janbozorgi ◽  
M. Reza H. Sheikhi ◽  
Hameed Metghalchi

The principle of detailed balance is shown to be a sufficient condition for the second law of thermodynamics in thermally equilibrated elementary chemical reactions. For an elementary reaction, the principle of detailed balance relates the forward and the reverse rate constants through the reaction equilibrium constant. It is shown that, in addition to the long known thermodynamic inconsistency at chemical equilibrium state, departure from this principle introduces an extra source/sink of entropy in the entropy balance for an elementary chemical reaction. The departure results in the wrong final chemical equilibrium state and, depending on the choice of the reverse rate constants, may lead to negative entropy productions during kinetic transients.


2001 ◽  
Vol 08 (04) ◽  
pp. 315-328 ◽  
Author(s):  
A. M. Tsirlin ◽  
V. Kazakov ◽  
N. A. Kolinko

In this paper, two types of systems — thermodynamic and economic — are considered, which include a large number of micro subsystems and are controlled on the macro level (macrocontrolled systems). The analogy between the maximal work problem in thermodynamics and the maximal profit problem in a microeconomic system is investigated. The notion of exergy is generalized for the systems which do not contain reservoirs, and the conditions of maximal power of heat engines are generalized for systems with arbitrary structure. The notion of system profitability and the measure of irreversibility of an microeconomic processes are introduced. The extremal principle which determines an equilibrium state of open microeconomic system, is formulated. The conditions of optimality of resource trading and the expression for profitability of resource exchange are formulated for systems which include market with perfect competition, and for systems which do not include it. Economic analogues of the second law of thermodynamics are formulated using introduced concepts. The first part of the paper is devoted to thermodynamic systems and the second to microeconomic systems.


2004 ◽  
Vol 126 (1) ◽  
pp. 673-676 ◽  
Author(s):  
Sean E. Wright ◽  
Marc A. Rosen

In the field of solar engineering the practical performance of solar energy conversion devices is generally evaluated strictly on an energy (first law) basis. However, the second law of thermodynamics determines the maximum work potential or exergy content of radiative fluxes independent of any conceptual device. The work in this paper quantifies the effect of directional and spectral distribution of terrestrial solar radiation (SR) on its exergy content. This is particularly important as the thermodynamic character of terrestrial SR is very different from that of blackbody radiation (BR). Exergetic (second law) efficiencies compare the work output of a device to the exergy content of the radiative source flux rather than its energy flux. As a result, exergetic efficiencies reveal that the performance of devices in practice is always better than what is indicated by the corresponding energy efficiency. The results presented in this paper introduce the benefits of using exergy analysis for solar cell design, performance evaluation and optimization.


Author(s):  
Wen-An Yong

This paper proposes four fundamental requirements for establishing PDEs (partial differential equations) modelling irreversible processes. We show that the PDEs derived via the CDF (conservation-dissipation formalism) meet all the requirements. In doing so, we find useful constraints on the freedoms of CDF and point out that a shortcoming of the formalism can be remedied with the help of the Maxwell iteration. It is proved that the iteration preserves the gradient structure and strong dissipativeness of the CDF-based PDEs. A refined formulation of the second law of thermodynamics is given to characterize the strong dissipativeness, while the gradient structure corresponds to nonlinear Onsager relations. Further advantages and limitations of CDF will also be presented. This article is part of the theme issue ‘Fundamental aspects of nonequilibrium thermodynamics’.


Sign in / Sign up

Export Citation Format

Share Document