Detection of basmati rice using microsatellite markers

2021 ◽  
pp. 1-8

Basmati rice is a fine and aromatic rice grown mainly in certain areas of Punjab province in Pakistan. It has high demand in the international market and a source of earning foreign exchange via export. Adulteration of non-basmati rice grains is a major challenge to secure its export standards. Hence, the development of a simple and cost-effective method is necessary to screen the basmati and non-basmati rice samples. In this study, we have validated the efficiency of different molecular markers by screening seven unknown rice samples. Our results demonstrated that three markers namely RM1, RM19 and RM225 proved to be efficient microsatellite molecular markers that could be used to screen basmati and non-basmati rice samples. Further, these results are validated based on expression pattern of Badh2 gene among the basmati and non-basmati rice. Thus, this study provides a contribution towards development of a simple and cost-effective method for rapid screening of basmati rice.

2021 ◽  
Author(s):  
Aneeqa Khalid ◽  
Saeeda Nadir Ali ◽  
Amtul Qayoom ◽  
Sajid Iqbal ◽  
Sadia Ansari ◽  
...  

Abstract An analytical method was developed and validated for the determination of fludioxonil in rice samples. Rice samples for the study were collected from different regions of Pakistan. The method was based on safe and cost-effective extraction of fludioxonil from rice grains using acetone and methanol (1:1), efficient clean-up through homogenous mixture of acidic aluminum (12 g) and activated charcoal (1 g) followed by liquid chromatographic determination with UV detection. Quantification was performed on Prospher Star C18 (5 µm, 25 x 0.46 cm) column maintaining the temperature 40ºC and detector wavelength 212 nm using mobile phase 50:50 v/v methanol-water (pH 3.3) employing flow rate 1.0 mL.min-1 and 20 µL injection volume. The method showed linearity with correlation coefficient greater than 0.998. The proposed method was precisely validated for rice sample of all regions, showing recoveries higher than 98%. Rice samples collected from Badin, Multan, Hyderabad, Lahore, Jahania and Sarghoda was found to have fludioxonil residues 0.046, 0.045, 0,043, 0.040, 0.024 and 0.016 mg.kg-1 respectively, all below the maximum residual limit (MRL) level i.e. 0.05 mg.kg-1 whereas samples collected from Khanewal and Gularchi showed fludioxonil residue above MRL i.e 0.065 and 0.058 mg.kg-1 respectively. However, fludioxonil residues was not detected in rice sample collected from city Makhdumpur.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2020 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti

Aggregation of amyloid beeta 1-42 (Aβ<sub>42</sub>) peptide causes the formation of clustered deposits knows as amyloid plaques in the brain which leads to neuronal dysfunction and memory loss and associated with many neurological disorders including Alzheimer’s and Parkinson’s. Aβ<sub>42</sub> has core structural motif with phenylalanine at the 19 and 20 positions. The diphenylalanine (FF) residue plays a crucial role in the formation of amyloid fibers and serves as model peptide for studying Aβ<sub>42 </sub>aggregation. FF self-assembles to well-ordered tubular morphology via aromatic pi-pi stackings. Our studies, suggest that the aromatic rings present in the anti-amyloidogenic compounds may interact with the pi-pi stacking interactions present in the FF. Even the compounds which do not have aromatic rings, like cyclodextrin and cucurbituril show anti-amyloid property due to the binding of aromatic ring inside the guest cavity. Hence, our studies also suggest that compounds which may have a functional moiety capable of interacting with the aromatic stacking interactions might be tested for their anti-amyloidogenic properties. Further, in this manuscript, we have proposed two novel nanoparticle based assays for the rapid screening of amyloid inhibitors. In the first assay, interaction between biotin-tagged FF peptide and the streptavidin labelled gold nanoparticles (s-AuNPs) were used. In another assay, thiol-Au interactions were used to develop an assay for detection of amyloid inhibitors. It is envisaged that the proposed analytical method will provide a simple, facile and cost effective technique for the screening of amyloid inhibitors and may be of immense practical implications to find the therapeutic remedies for the diseases associated with the protein aggregation.


1996 ◽  
Vol 33 (8) ◽  
pp. 23-29 ◽  
Author(s):  
I. Dor ◽  
N. Ben-Yosef

About one hundred and fifty wastewater reservoirs store effluents for irrigation in Israel. Effluent qualities differ according to the inflowing wastewater quality, the degree of pretreatment and the operational parameters. Certain aspects of water quality like concentration of organic matter, suspended solids and chlorophyll are significantly correlated with the water column transparency and colour. Accordingly optical images of the reservoirs obtained from the SPOT satellite demonstrate pronounced differences correlated with the water quality. The analysis of satellite multispectral images is based on a theoretical model. The model calculates, using the radiation transfer equation, the volume reflectance of the water body. Satellite images of 99 reservoirs were analyzed in the chromacity space in order to classify them according to water quality. Principal Component Analysis backed by the theoretical model increases the method sensitivity. Further elaboration of this approach will lead to the establishment of a time and cost effective method for the routine monitoring of these hypertrophic wastewater reservoirs.


2013 ◽  
Vol 10 (3) ◽  
pp. 159-163 ◽  
Author(s):  
Jun Peng ◽  
Yue Feng ◽  
Zhu Tao ◽  
Yingjie Chen ◽  
Xiangnan Hu

2001 ◽  
Vol 47 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Magnus Jonsson ◽  
Joyce Carlson ◽  
Jan-Olof Jeppsson ◽  
Per Simonsson

Abstract Background: Electrophoresis of serum samples allows detection of monoclonal gammopathies indicative of multiple myeloma, Waldenström macroglobulinemia, monoclonal gammopathy of undetermined significance, and amyloidosis. Present methods of high-resolution agarose gel electrophoresis (HRAGE) and immunofixation electrophoresis (IFE) are manual and labor-intensive. Capillary zone electrophoresis (CZE) allows rapid automated protein separation and produces digital absorbance data, appropriate as input for a computerized decision support system. Methods: Using the Beckman Paragon CZE 2000 instrument, we analyzed 711 routine clinical samples, including 95 monoclonal components (MCs) and 9 cases of Bence Jones myeloma, in both the CZE and HRAGE systems. Mathematical algorithms developed for the detection of monoclonal immunoglobulins (MCs) in the γ- and β-regions of the electropherogram were tested on the entire material. Additional algorithms evaluating oligoclonality and polyclonal concentrations of immunoglobulins were also tested. Results: CZE electropherograms corresponded well with HRAGE. Only one IgG MC of 1 g/L, visible on HRAGE, was not visible after CZE. Algorithms detected 94 of 95 MCs (98.9%) and 100% of those visible after CZE. Of 607 samples lacking an MC on HRAGE, only 3 were identified by the algorithms (specificity, 99%). Algorithms evaluating total gammaglobulinemia and oligoclonality also identified several cases of Bence Jones myeloma. Conclusions: The use of capillary electrophoresis provides a modern, rapid, and cost-effective method of analyzing serum proteins. The additional option of computerized decision support, which provides rapid and standardized interpretations, should increase the clinical availability and usefulness of protein analyses in the future.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 186
Author(s):  
Jia-Huan Qu ◽  
Karen Leirs ◽  
Remei Escudero ◽  
Žiga Strmšek ◽  
Roman Jerala ◽  
...  

To date, surface plasmon resonance (SPR) biosensors have been exploited in numerous different contexts while continuously pushing boundaries in terms of improved sensitivity, specificity, portability and reusability. The latter has attracted attention as a viable alternative to disposable biosensors, also offering prospects for rapid screening of biomolecules or biomolecular interactions. In this context here, we developed an approach to successfully regenerate a fiber-optic (FO)-SPR surface when utilizing cobalt (II)-nitrilotriacetic acid (NTA) surface chemistry. To achieve this, we tested multiple regeneration conditions that can disrupt the NTA chelate on a surface fully saturated with His6-tagged antibody fragments (scFv-33H1F7) over ten regeneration cycles. The best surface regeneration was obtained when combining 100 mM EDTA, 500 mM imidazole and 0.5% SDS at pH 8.0 for 1 min with shaking at 150 rpm followed by washing with 0.5 M NaOH for 3 min. The true versatility of the established approach was proven by regenerating the NTA surface for ten cycles with three other model system bioreceptors, different in their size and structure: His6-tagged SARS-CoV-2 spike fragment (receptor binding domain, RBD), a red fluorescent protein (RFP) and protein origami carrying 4 RFPs (Tet12SN-RRRR). Enabling the removal of His6-tagged bioreceptors from NTA surfaces in a fast and cost-effective manner can have broad applications, spanning from the development of biosensors and various biopharmaceutical analyses to the synthesis of novel biomaterials.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1352
Author(s):  
Darius Riziki Martin ◽  
Nicole Remaliah Sibuyi ◽  
Phumuzile Dube ◽  
Adewale Oluwaseun Fadaka ◽  
Ruben Cloete ◽  
...  

The transmission of Tuberculosis (TB) is very rapid and the burden it places on health care systems is felt globally. The effective management and prevention of this disease requires that it is detected early. Current TB diagnostic approaches, such as the culture, sputum smear, skin tuberculin, and molecular tests are time-consuming, and some are unaffordable for low-income countries. Rapid tests for disease biomarker detection are mostly based on immunological assays that use antibodies which are costly to produce, have low sensitivity and stability. Aptamers can replace antibodies in these diagnostic tests for the development of new rapid tests that are more cost effective; more stable at high temperatures and therefore have a better shelf life; do not have batch-to-batch variations, and thus more consistently bind to a specific target with similar or higher specificity and selectivity and are therefore more reliable. Advancements in TB research, in particular the application of proteomics to identify TB specific biomarkers, led to the identification of a number of biomarker proteins, that can be used to develop aptamer-based diagnostic assays able to screen individuals at the point-of-care (POC) more efficiently in resource-limited settings.


Sign in / Sign up

Export Citation Format

Share Document