Brigádní protiútok

2021 ◽  
Vol 16 (1) ◽  
pp. 89-108
Author(s):  
Zdeněk Flasar ◽  
◽  
Jan Zezula ◽  

According to prepared scenarios for deployment the forces, the authors publish the Results of their research, generally accepted principles of preparation and conducting of counterattack by a brigade task force, after or during the defense. The paper summarizes principles and conditions of a successful counterattack, which are then compared with real outputs from the evaluation of LIVEX and CAX of the Czech mechanized brigade, including verification of selected principles using model simulation of a counterattack brigade task force. The article addresses the principles and attributes, that effect the success of the counterattack, with emphasis on the moment of placement of the battalion in the counterattack.

2020 ◽  
Vol 1 (154) ◽  
pp. 44-49
Author(s):  
В. Kindratskyy ◽  
R. Litvin

Driving systems for hybrid cars and electric vehicles equipped with electric motors have different structures and characteristics. In the vast majority of hybrids, depending on the driving mode, the torque on the wheels of the car can be generated separately by both the internal combustion engine and the electric motor, or by working together. Based on the research results it is established that at the moment of starting the electric motor, the torque in the transmission sections steeply increases to 17 N•m, and for about 1 s decreases to the value of 7 N•m. In the period from 4 to 5.5 s, the torque increases to 14 N•m, which is explained by the overcoming of the inertial load during acceleration of the driven weight, and rapidly decreases to the value of 4 N•m, which corresponds to the consolidated moment of resistance to movement. The electromagnetic moment of electric motor thus also increases steeply in the initial stage of starting the motor up to 66 N•m and after 1 s decreases to the value of 15 N•m. After 5.5 s there is an increase in the moment to the value of 66 N•m and after 5.8 s it stabilizes and ranges from -6 to 22 N•m. In turn, the calculations for an electromechanical transmission equipped with a resilient-elastic coupling showed that the maximum torque in its sections Т2 during the start-up period decreased to 9 N•m, and the acceleration time to a steady turning velocity of the driven weight slightly increased to 6.8 s. The torque that occurs in the transmission sections during acceleration to a steady velocity does not exceed 13 N•m. The torque in the resilient-elastic coupling sections during the start-up period does not exceed 10 N•m, and its value, upon reaching the steady motion of the driven weight, is slightly less than 5 N•m. Peak torque in the resilient-elastic coupling sections Т1 reaches 22 N•m, while in the transmission Т2 it is 13 N•m, which confirms the efficiency of resilient-elastic coupling operation. Thus, the use of resilient-elastic coupling in an electromechanical transmission can reduce the amplitude of the torque in the drive sections during the start-up period by about 1.9 times, as compared to the amplitude of the torque without resilient-elastic coupling, and reduce the peak torque of the transmission sections by 1.7 times. Keywords: asynchronous electric motor, dynamic model, mathematical model, simulation model, torque.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
Burton B. Silver

Sectioned tissue rarely indicates evidence of what is probably a highly dynamic state of activity in mitochondria which have been reported to undergo a variety of movements such as streaming, divisions and coalescence. Recently, mitochondria from the rat anterior pituitary have been fixed in a variety of configurations which suggest that conformational changes were occurring at the moment of fixation. Pinocytotic-like vacuoles which may be taking in or expelling materials from the surrounding cell medium, appear to be forming in some of the mitochondria. In some cases, pores extend into the matrix of the mitochondria. In other forms, the remains of what seems to be pinched off vacuoles are evident in the mitochondrial interior. Dense materials, resembling secretory droplets, appear at the junction of the pores and the cytoplasm. The droplets are similar to the secretory materials commonly identified in electron micrographs of the anterior pituitary.


Author(s):  
J. S. Wall

The forte of the Scanning transmission Electron Microscope (STEM) is high resolution imaging with high contrast on thin specimens, as demonstrated by visualization of single heavy atoms. of equal importance for biology is the efficient utilization of all available signals, permitting low dose imaging of unstained single molecules such as DNA.Our work at Brookhaven has concentrated on: 1) design and construction of instruments optimized for a narrow range of biological applications and 2) use of such instruments in a very active user/collaborator program. Therefore our program is highly interactive with a strong emphasis on producing results which are interpretable with a high level of confidence.The major challenge we face at the moment is specimen preparation. The resolution of the STEM is better than 2.5 A, but measurements of resolution vs. dose level off at a resolution of 20 A at a dose of 10 el/A2 on a well-behaved biological specimen such as TMV (tobacco mosaic virus). To track down this problem we are examining all aspects of specimen preparation: purification of biological material, deposition on the thin film substrate, washing, fast freezing and freeze drying. As we attempt to improve our equipment/technique, we use image analysis of TMV internal controls included in all STEM samples as a monitor sensitive enough to detect even a few percent improvement. For delicate specimens, carbon films can be very harsh-leading to disruption of the sample. Therefore we are developing conducting polymer films as alternative substrates, as described elsewhere in these Proceedings. For specimen preparation studies, we have identified (from our user/collaborator program ) a variety of “canary” specimens, each uniquely sensitive to one particular aspect of sample preparation, so we can attempt to separate the variables involved.


2000 ◽  
Vol 64 (10) ◽  
pp. 708-714
Author(s):  
PJ Ferrillo ◽  
KB Chance ◽  
RI Garcia ◽  
WE Kerschbaum ◽  
JJ Koelbl ◽  
...  

2001 ◽  
Vol 11 (3) ◽  
pp. 6-13
Author(s):  
Lisa Scott-Trautman ◽  
Kristin A. Chmela
Keyword(s):  

Author(s):  
Oscar D. Guillamondegui

Traumatic brain injury (TBI) is a serious epidemic in the United States. It affects patients of all ages, race, and socioeconomic status (SES). The current care of these patients typically manifests after sequelae have been identified after discharge from the hospital, long after the inciting event. The purpose of this article is to introduce the concept of identification and management of the TBI patient from the moment of injury through long-term care as a multidisciplinary approach. By promoting an awareness of the issues that develop around the acutely injured brain and linking them to long-term outcomes, the trauma team can initiate care early to alter the effect on the patient, family, and community. Hopefully, by describing the care afforded at a trauma center and by a multidisciplinary team, we can bring a better understanding to the armamentarium of methods utilized to treat the difficult population of TBI patients.


Sign in / Sign up

Export Citation Format

Share Document