scholarly journals TRANSITION PROCESSES IN ELECTROMECHANICAL TRANSMISSION WITH A RESILIENT-ELASTIC COUPLING

2020 ◽  
Vol 1 (154) ◽  
pp. 44-49
Author(s):  
В. Kindratskyy ◽  
R. Litvin

Driving systems for hybrid cars and electric vehicles equipped with electric motors have different structures and characteristics. In the vast majority of hybrids, depending on the driving mode, the torque on the wheels of the car can be generated separately by both the internal combustion engine and the electric motor, or by working together. Based on the research results it is established that at the moment of starting the electric motor, the torque in the transmission sections steeply increases to 17 N•m, and for about 1 s decreases to the value of 7 N•m. In the period from 4 to 5.5 s, the torque increases to 14 N•m, which is explained by the overcoming of the inertial load during acceleration of the driven weight, and rapidly decreases to the value of 4 N•m, which corresponds to the consolidated moment of resistance to movement. The electromagnetic moment of electric motor thus also increases steeply in the initial stage of starting the motor up to 66 N•m and after 1 s decreases to the value of 15 N•m. After 5.5 s there is an increase in the moment to the value of 66 N•m and after 5.8 s it stabilizes and ranges from -6 to 22 N•m. In turn, the calculations for an electromechanical transmission equipped with a resilient-elastic coupling showed that the maximum torque in its sections Т2 during the start-up period decreased to 9 N•m, and the acceleration time to a steady turning velocity of the driven weight slightly increased to 6.8 s. The torque that occurs in the transmission sections during acceleration to a steady velocity does not exceed 13 N•m. The torque in the resilient-elastic coupling sections during the start-up period does not exceed 10 N•m, and its value, upon reaching the steady motion of the driven weight, is slightly less than 5 N•m. Peak torque in the resilient-elastic coupling sections Т1 reaches 22 N•m, while in the transmission Т2 it is 13 N•m, which confirms the efficiency of resilient-elastic coupling operation. Thus, the use of resilient-elastic coupling in an electromechanical transmission can reduce the amplitude of the torque in the drive sections during the start-up period by about 1.9 times, as compared to the amplitude of the torque without resilient-elastic coupling, and reduce the peak torque of the transmission sections by 1.7 times. Keywords: asynchronous electric motor, dynamic model, mathematical model, simulation model, torque.

2018 ◽  
Vol 13 (4) ◽  
pp. 119-123
Author(s):  
Александр Мудров ◽  
Aleksandr Mudrov

The operation of any machine includes three periods of operation: start and acceleration, steady motion, braking and stopping. During periods of start-up and braking, large dynamic loads occur, adversely affecting the strength of machine elements and the overloading of the drive source. The purpose of the study is to determine the dynamic loads during the start-up of the machine and to find options for reducing them. The mathematical values of dynamic loads are determined by the example of a spatial mixer from rotating elements of the drive. It has been established that the dynamic moments from the rotating elements of the drive are several times greater than those from static loads. Practical methods are shown to reduce these loads using an elastic coupling, removing the coupling from the structure, manufacturing it from composite materials, and increasing the start-up time of the electric motor. The significance of the results obtained for machines using transmissions through couplings consists in a substantial reduction of the influence of dynamic loads during start-up on the elements and source of the drive and an increase in the service life and productivity of the machines as a whole.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6839
Author(s):  
Piotr Wróblewski ◽  
Robert Rogólski

Currently, there are many methods of reducing the friction losses of the main components of an internal combustion piston engine. The operating conditions of internal combustion piston engines intended for the propulsion of ultralight aircraft differ significantly from those prevailing in the case of using these engines for the propulsion of vehicles. There are many studies on the influence of selected anti-wear coatings on the friction coefficients when using various lubricants, measured via tribometers. Unfortunately, the conditions obtained in the laboratory significantly differ from those prevailing in an engine operating under external conditions. The study investigated the influence of a change in the tribological parameters of TiN, TiAlN, CrN and DLC1 anti-wear coatings on the moment of resistance to the piston movement of an aircraft engine. The operating parameters of a real engine working in an aircraft were simulated. The main focus was on the coating layers of the sliding surfaces of the piston rings and the cylinder running surface. The properties of the coatings affect the correlation of the scale of the adhesion and cohesion phenomena of the oil to the opposite planes, and this determines the nature of the changes in the moment of resistance to engine motion. As it is commonly known, with an increase in the value of the maximum pressure of the working medium in the combustion chamber, the share of mixed friction in liquid friction increases, similar to the high oil temperatures occurring in aircraft engines. Therefore, there is a justified need to supplement the research in the field of analyzing the characteristics of the torque of resistance to motion for these engines, in particular in the field of the usable rotational speeds of the crankshaft. Applicable anti-wear systems based on selected coatings can significantly improve operational safety and noticeably reduce fuel consumption.


Author(s):  
Viacheslav Loveikin ◽  
Kostiantyn Pochka ◽  
Mykola Prystailo ◽  
Maksym Balaka ◽  
Olha Pochka

The impact of the cranks displacement angle on the motion non-uniformity is determined for three forming trolleys of a roller forming unit with an energy-balanced drive mechanism. At the same time, the specified unit is presented by a dynamic model with one freedom degree, where the extended coordinate is taken as the angular coordinate of the crank rotation. For such a model, a differential equation of motion is written, for solved which a numerical method was used. The inertia reduced moment of the whole unit, and the resistance forces moment, reduced to the crank rotation axis, to move of forming trolleys during the formation of products from building mixtures are determined, and also the nominal rated power of the electric motor was calculated, when solved a differential equation of motion. According to these data, asynchronous electric motor with a short-circuited rotor was chosen, for which a mechanical characteristic is constructed by the Kloss formula. Having solved the differential equation of motion with all defined characteristics, we obtain the change function of the crank angular velocity from start-up moment and during steady motion mode. After that, we calculated the time corresponding to the angular velocity value, and obtained the change function of the crank angular acceleration from start-up moment and during steady motion mode. The motion non-uniformity of the roller forming unit has been determined by the motion non-uniformity factor, the motion dynamism factor and the extended factor of motion assessment during steady motion mode. The impact of drive cranks displacement angle on the motion non-uniformity has been traced, as a result, the specified factors have the minimum values at cranks displacement on the angle Δφ=60°. The results may in the future are used to refine and improve the existing engineering methods for estimating the drive mechanisms of roller forming machines, both at design stages and in practical use.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


2021 ◽  
Vol 1 ◽  
pp. 477-486
Author(s):  
Vahid Douzloo Salehi

AbstractHydrogen is a promising fuel to fulfil climate goals and future legislation requirements due to its carbon-free property. Especially hydrogen fueled buses and heavy-duty vehicles (HDVs) strongly move into the foreground. In contrast to the hydrogen-based fuel cell technology, which is already in commercial use, vehicles with hydrogen internal combustion engines (H2-ICE) are also a currently pursued field of research, representing a potentially holistic carbon-free drive train. Real applications of H2-ICE vehicles are currently not known but can be expected, since their suitability is put to test in a few insolated projects at this time. This paper provides a literature survey to reflect the current state of H2-ICEs focused on city buses. An extended view to HDVs and fuel cell technology allows to recognize trends in hydrogen transport sector, to identify further research potential and to derive useful conclusion. In addition, within this paper we apply green MAGIC as a holistic approach and discuss Well-to-Tank green hydrogen supply in relation to a H2-ICE city bus. Building on that, we introduce the upcoming Hydrogen-bus project, where tests of H2-ICE buses in real driving mode are foreseen to investigate Tank-to-Wheel.


2021 ◽  
Vol 16 (1) ◽  
pp. 89-108
Author(s):  
Zdeněk Flasar ◽  
◽  
Jan Zezula ◽  

According to prepared scenarios for deployment the forces, the authors publish the Results of their research, generally accepted principles of preparation and conducting of counterattack by a brigade task force, after or during the defense. The paper summarizes principles and conditions of a successful counterattack, which are then compared with real outputs from the evaluation of LIVEX and CAX of the Czech mechanized brigade, including verification of selected principles using model simulation of a counterattack brigade task force. The article addresses the principles and attributes, that effect the success of the counterattack, with emphasis on the moment of placement of the battalion in the counterattack.


2018 ◽  
Vol 180 ◽  
pp. 03001
Author(s):  
Piotr Julian Biczel ◽  
Maciej Kwiatkowski

Electric buses are now seen as the primary means of public transport in cities. However, their exploitation is associated with a number of limitations. The article presents the problem of battery use in buses. The design differences between the vehicle with the internal combustion engine and the electric motor are discussed. In particular, authors compared the number of passengers that both types of buses can take, as well as the difference in vehicle mass and range, and the reasons for these differences. The types of electrochemical cells that can be used to power vehicles and their basic features are presented. The article focuses on the NMC, LFP, LTO and LIC type cells. Next, the battery pack structure and its components were described. The specific energies of cells and batteries constructed from these cells were compared. Next, the most important features of the vehicle equipped with batteries with various types of cells are discussed. The mass, range, charging time and cycle lifetime of the batteries were compared. The basic dependence was noted: the greater the specific energy, the smaller the number of battery cycles. So if the bus has to take more passengers, it must have light batteries, which should be frequently charged, which requires high cyclic lifetimes.


2020 ◽  
Vol 10 (16) ◽  
pp. 5467
Author(s):  
Po-Tuan Chen ◽  
Cheng-Jung Yang ◽  
Kuohsiu David Huang

To avoid unnecessary power loss during switching between the various power sources of a composite electric vehicle while achieving smooth operation, this study focuses on the development and dynamic simulation analysis of a control system for the power of a parallel composite vehicle. This system includes a power integration and distribution mechanism, which enables the two power sources of the internal combustion engine and electric motor to operate independently or in coordination to meet the different power-output requirements. The integration of the electric motor and battery-charging engine reduces the system complexity. To verify the working efficiency of the energy control strategy for the power system, the NEDC2000 cycle is used for the vehicle driving test, a fuzzy logic controller is established using Matlab/Simulink, and the speed and torque analysis of the components related to power system performance are conducted. Through a dynamic simulation, it is revealed that this fuzzy logic controller can adjust the two power sources (the motor and internal combustion engine) appropriately. The internal combustion engine can be maintained in the optimal operating region with low, medium, and high driving speeds.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012021
Author(s):  
M M M. A Kader ◽  
Z B Razali ◽  
W A Mustafa ◽  
S A Saidi ◽  
A A Nagoor Gunny ◽  
...  

Abstract This research is used to crank start automotive vehicle. There are many different system used in order to start-up vehicles using electric starter, in the time of battery low-power or totally drained. The purpose of this research is to help the driver to get out of this difficulty. Nowadays there are many people that have experienced such a bad moment, where they are stranded at road side due to malfunction starter in their car because of battery problem. Most of the vehicle electric starter failure is because of battery corrosion or battery undercharged. The importance of this research is to solve this problem. Starter is a vital part of the vehicle, without it no automotive vehicles able to operate. These starters will rotate an internal-combustion engine to initiate the engine’s operation under its own power. Starters also can be malfunction too due to corroded electrical connections or an undercharged battery. This system can be used to solve this problem. This system used human energy by using mechanical parts in order to produce electrical power. In order to produce electrical current, workforce will be applied by rotating the wheel that already linked by belt and from that rotations will trigger a magnetic force and it will produce an electrical current and supply it into battery. This system is divided into two development; hardware development and software development. The hardware development involved, mechanical device which is used and electrical device such as monitor. For software development, Fritzing is used to construct circuit.


Sign in / Sign up

Export Citation Format

Share Document