scholarly journals Plum Tree Gums as Local Alternatives for Foreign Drilling Fluid Materials

2021 ◽  
Vol 7 (3) ◽  
pp. 51-65
Author(s):  
Dr. Faleh H. M. Almahdawi ◽  
Dr. Mohammad N. Hussain ◽  
Haider Salim Jasim

A few years ago oil well drilling cost increased due to using modern technique such as equipment   and materials that are used by specialist companies so studies and researches were required to decrease these costs. In this study we tried to find local alternatives for foreign drilling fluid materials that are aimed to decrease oil well drilling cost although the cost of drilling fluid materials reach to 30 % of total materials cost of drilling oil well.       In the first part of this study seven local materials and it's tested under API Specification 13A for Drilling Fluids Materials were investigated. Plum Tree Gum was succeeded in this test among several other materials as drilling fluid materials. The second part of this study was a comparison between these local alternative and similar foreign materials for same sample to show physical and rheological properties. The third part of this study was tested this local alternative under different values temperature to show effect the temperature on physical and rheological properties of this local alternative. The results approved that; Plum Tree Gum, local alternative, can use as filtration control materials for water based drilling fluid. Also this local alternative increased viscosity as minimal for water based drilling fluids, So it can be used as part alternative for Bentonite to increase viscosity by increasing Yield point and decreasing solids concentration in drilling fluids so it has  positive effect on Rig equipment’s and Pay-zone.   Plum Tree Gum is Ore polymers (plant origin)  

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Arild Saasen

Controlling the annular frictional pressure losses is important in order to drill safely with overpressure without fracturing the formation. To predict these pressure losses, however, is not straightforward. First of all, the pressure losses depend on the annulus eccentricity. Moving the drillstring to the wall generates a wider flow channel in part of the annulus which reduces the frictional pressure losses significantly. The drillstring motion itself also affects the pressure loss significantly. The drillstring rotation, even for fairly small rotation rates, creates unstable flow and sometimes turbulence in the annulus even without axial flow. Transversal motion of the drillstring creates vortices that destabilize the flow. Consequently, the annular frictional pressure loss is increased even though the drilling fluid becomes thinner because of added shear rate. Naturally, the rheological properties of the drilling fluid play an important role. These rheological properties include more properties than the viscosity as measured by API procedures. It is impossible to use the same frictional pressure loss model for water based and oil based drilling fluids even if their viscosity profile is equal because of the different ways these fluids build viscosity. Water based drilling fluids are normally constructed as a polymer solution while the oil based are combinations of emulsions and dispersions. Furthermore, within both water based and oil based drilling fluids there are functional differences. These differences may be sufficiently large to require different models for two water based drilling fluids built with different types of polymers. In addition to these phenomena washouts and tool joints will create localised pressure losses. These localised pressure losses will again be coupled with the rheological properties of the drilling fluids. In this paper, all the above mentioned phenomena and their consequences for annular pressure losses will be discussed in detail. North Sea field data is used as an example. It is not straightforward to build general annular pressure loss models. This argument is based on flow stability analysis and the consequences of using drilling fluids with different rheological properties. These different rheological properties include shear dependent viscosity, elongational viscosity and other viscoelastic properties.


Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Sneha Sayindla ◽  
Bjørnar Lund ◽  
Benjamin Werner ◽  
...  

One important requirement for a drilling fluid is the ability to transport the cuttings out of the borehole. Improved hole cleaning is a key to solve several challenges in the drilling industry and will allow both longer wells and improved quality of well construction. It has been observed, however, that drilling fluids with similar properties according to the API standard can have significantly different behavior with respect to hole cleaning performance. The reasons for this are not fully understood. This paper presents results from flow loop laboratory tests without and with injected cuttings size particles using a base oil and a commercial oil based drilling fluid. The results demonstrate the importance of the rheological properties of the fluids for the hole cleaning performance. A thorough investigation of the viscoelastic properties of the fluids was performed with a Fann viscometer and a Paar-Physica rheometer, and was used to interpret the results from the flow loop experiments. Improved understanding of the fluid properties relevant to hole cleaning performance will help develop better models of wellbore hydraulics used in planning of well operations. Eventually this may lead to higher ROP with water based drilling fluids as obtained with oil based drilling fluids. This may ease cuttings handling in many operations and thereby significantly reduce the drilling cost using (normally) more environmentally friendly fluids. The experiments have been conducted as part of an industry-sponsored research project where understanding the hole cleaning performance of various oil and water based drilling fluids is the aim. The experiments have been performed under realistic conditions. The flow loop includes a 10 meter long test section with 2″ OD freely rotating drillstring inside a 4″ ID wellbore made of concrete. Sand particles were injected while circulating the drilling fluid through the test section in horizontal position.


Author(s):  
Flávia M. Fagundes ◽  
Nara B.C. Santos ◽  
João Jorge R. Damasceno ◽  
Fábio O. Arouca

In order to avoid solid-liquid gravitational separation of particles in the drilling fluid and cuttings generated in this process, the oil industry has been developing drilling fluids with shear-thinning and thixotropic characteristics. In case of operational stops in the drilling process, the intense sedimentation of these particles can damage the equipment used and the well. In this context, this study simulated an operational stop to obtain information about stability of solids in a paraffin-based suspension with time-dependent shear-thinning behavior, which has already been used in current drilling processes. A long-term test using gamma-ray attenuation technique identified the separation dynamics of a set of micrometric particles belonging to and incorporated into the drilling fluid during operation. This test verified the typical regions of gravitational sedimentation and, through constant concentration curves, indicated that the sedimentation process did not occur at a constant rate. This study also proposed a constitutive equation for pressure on solids.


SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2220-2233
Author(s):  
Weian Huang ◽  
Ming Lei ◽  
Jingwen Wang ◽  
Kaihe Lv ◽  
Lin Jiang ◽  
...  

Summary The rheology of drilling fluid is commonly regulated by chemical methods. In this work, a physical method of a high-frequency and high-voltage alternating current (AC) electric field to regulate the rheological properties of water-based drilling fluid is established. The effects of the electric field on the continuous phase and dispersed phase, as well as two kinds of water-based drilling fluids, were investigated, and the response relationship among rheological properties modeled by Bingham and Herschel-Bulkley (H-B) models and electric-field parameters was explored. Results showed that water conductivity increased when voltage reached 4 kV, whereas it was restored to the original state after 3 hours in the absence of an electric field, showing a memory effect. The effect was also observed on bentonite suspension, whose plastic viscosity increased with the aid of an electric field and decreased over time. Voltage showed the greatest effect on bentonite-suspension viscosity, followed by frequency and pulse-width ratio. Under the condition of voltage of 5 kV, frequency of 5 kHz, and pulse-width ratio of 80%, there was a maximum increase of 50% in viscosity. The addition of salts caused bentonite-suspension flocculation, and electric field reduced the consistency coefficient and relieved flocculation state. When polymers were incorporated in bentonite suspension, the electric field could decrease the adsorption amount between clay particles and polymeric additives such as amphoteric and acrylamide-based polymers. For two typical drilling fluids, the voltage of an introduced electric field was the main controlling factor to change the rheological properties; their plastic viscosity and consistency coefficient both started to increase when voltage reached 4 kV.


2012 ◽  
Vol 727-728 ◽  
pp. 1878-1883 ◽  
Author(s):  
Bruno Arantes Moreira ◽  
Flávia Cristina Assis Silva ◽  
Larissa dos Santos Sousa ◽  
Fábio de Oliveira Arouca ◽  
João Jorge Ribeiro Damasceno

During oil well drilling processes in reservoir-rocks, the drilling fluid invades the formation, forming a layer of particles called filter cake. The formation of a thin filter cake and low permeability helps to control the drilling operation, ensuring the stability of the well and reducing the fluid loss of the liquid phase in the interior of the rocks. The empirical determination of the constitutive equation for the stress in solids is essential to evaluate the filtration and filter cake formation in drilling operations, enabling the operation simulation. In this context, this study aims to evaluate the relationship between the porosity and stress in solids of porous media composed of bridging agents used in drilling fluids. The concentration distribution in sediments was determined using a non-destructive technique based on the measure of attenuated gamma rays. The procedure employed in this study avoids the use of compression-permeability cell for the sediment characterization.


Author(s):  
Massara Salam ◽  
Nada S. Al-Zubaidi ◽  
Asawer A. Al-Wasiti

In the process of drilling directional, extended-reach, and horizontal wells, the frictional forces between the drill string and the wellbore or casing can cause severe problems including excessive torque which is one of the most important problems during drilling oil and gas well. Drilling fluid plays an important role by reducing these frictional forces. In this research, an enhancement of lubricating properties of drilling fluids was fundamentally examined by adding Lignite NPs into the water-based drilling fluid. Lubricity, Rheology and filtration properties of water-based drilling fluid were measured at room temperature using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. Lignite NPs were added at different concentrations (0.05 %, 0.1 %, 0.2 %, 0.5 %, and 1 %) by weight into water-based drilling fluid. Lignite NPs showed good reduction in COF of water-based drilling fluid. The enhancement was increased with increasing Lignite NPs concentrations; 23.68%, 35.52%, and 45.3 % reduction in COF were obtained by adding 0.2%, 0.5%, and 1% by weight Lignite NPs concentration, respectively.


Author(s):  
Torbjørn Vrålstad ◽  
Ragnhild Skorpa ◽  
Arild Saasen

When a drilling fluid column remains static over a timeframe of several years, the drilling fluid separates into different sediment phases due to gravity separation. These heavy sediments, entitled “settled barite”, are the cause of significant operational problems several years after drilling. An important problem caused by settled barite occurs when performing casing cut-and-pull operations during slot recovery and well abandonment: the casing is “stuck” due to the sediments in the annulus outside the casing. The consistency and rheological properties of the sediments determine how easily the casing is removed. In this paper, we report a preliminary study were we have artificially prepared gravity sediment phases for two different types of water-based drilling fluids; one KCl/polymer-based fluid and one bentonite-based fluid. By studying the rheological properties of the obtained sediment phases, we see that there are considerable differences between the sediments for these different drilling fluids.


2017 ◽  
Vol 899 ◽  
pp. 528-533 ◽  
Author(s):  
Arley Silva Rossi ◽  
Marina Seixas Pereira ◽  
Jéssika Marina dos Santos ◽  
Irineu Petri Jr. ◽  
Carlos Henrique Ataíde

Drilled cuttings contaminated by non aqueous drilling fluids are the major waste from oil well drilling activities. More restrictive environmental legislation has led to the search for alternative technologies to promote cuttings decontamination according to the law. The mixture of cuttings and fluid returning from the well goes through a set of separation equipments, called solids control systems, in order to recover the drilling fluid for reuse. The cuttings from the solids control system must be decontaminated before they can be discharged into the sea. Microwave heating has been studied over the past few years as an alternative to promote the decontamination of this waste and has been shown to be a promising technology. This work aimed to investigate fundamental aspects of microwave heating and drying of drilled cuttings. The heating curve of two different drilling fluids commonly employed in well-drilling operations was obtained. The kinetics of drying of cuttings contaminated with these drilling fluids was also investigated. It was evaluated the behavior of organic phase and water removal in the microwave drying process.


2017 ◽  
Vol 890 ◽  
pp. 227-234
Author(s):  
Xian Bin Huang ◽  
Guan Cheng Jiang

Conventional oil based drilling fluids or muds (OBMs) using organophilic clay as viscosifier and rheological control agent cannot carry drill cuttings and suspend weighting materials effectively in oil well drilling process. It also causes excessive viscosity of drilling fluids, which lowers the rate of penetration. For the sake of solving these problems, in this study, hydrogen bonds-enhanced organoclay-free oil based drilling fluid was proposed. Firstly key additives (emulsifier, filter reducer) for OBMs with highly electronegative groups that might form hydrogen bonds were synthesized. In addition, a hydrogen bonding linker was synthesized and used to connect other additives to form a hydrogen bonding network in OBMs. The properties of drilling fluids were characterized by rheological measurements, static filtration experiments and plugging experiments. Experimental results show that, compared with the conventional OBM, the hydrogen bonds-enhanced organoclay-free OBMs substantially increased yield point (YP) and gel strengths, reduced filtration loss and exhibited a better plugging ability on high-permeability sand cores. Besides, a higher stability was also observed.


Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Bjørnar Lund ◽  
Benjamin Werner ◽  
Nils Opedal ◽  
...  

One important requirement for a drilling fluid is the ability to transport the cuttings out of the borehole. Improved hole cleaning is a key to solve several challenges in the drilling industry and will allow both longer wells and improved quality of well construction. It has been observed, however, that drilling fluids with similar properties according to the API standard can have significantly different behavior with respect to hole cleaning performance. The reasons for this are not fully understood. This paper presents results from laboratory tests where water based drilling fluids with similar rheological properties according to API measurements have been tested for their hole cleaning capabilities in a full scale flow loop. Thorough investigation of the viscoelastic properties of the fluids were performed with, among other instruments, a Paar-Physica rheometer. Improved understanding of the fluid properties relevant to hole cleaning performance will help develop better models of wellbore hydraulics used in planning of well operations. Eventually this may lead to higher ROP with water based drilling fluids as obtained with oil based drilling fluids. This may ease cuttings handling in many operations and thereby significantly reduce the drilling cost using (normally) more environmentally friendly fluids. The experiments have been conducted as part of an industry-sponsored research project where understanding the hole cleaning performance of various oil and water based drilling fluids is the aim. The experiments have been performed under realistic conditions. The flow loop includes a 12 meter long test section with 2″ OD freely rotating drillstring inside a 4″ ID wellbore made of concrete. Sand particles were injected while circulating the drilling fluid through the test section in horizontal position.


Sign in / Sign up

Export Citation Format

Share Document