scholarly journals Efficient Protocol for In vitro Regeneration of Ocimum sanctum using Nodal Segments as Explants

2021 ◽  
Vol 64 (1) ◽  
pp. 13-17
Author(s):  
Hammad Afzal Kayani ◽  
Mariam Raziq ◽  
Syeda Kahkashan Kazmi ◽  
Sheeba Naz ◽  
Saifullah Khan

Ocimum sanctum commonly called (holy basil) an herb containing medicinal, ornamental values, is often used in culinary applications. This research focuses on the improved and efficient protocol for the direct regeneration and acclimatisation of Ocimum sanctum using nodal segments. Organogenesis and multiplication from explants were observed to a maximum on Murashige and Skoog (MS) medium supplemented with 0.1 mg/L of 6-Benzyl amino purine (BAP) and 0.025 mg/L of Indole-3-acetic acid (IAA). Furthermore, same medium was found effective for the induction of roots, in the in-vitro grown plantlets. A series of experiments were conducted to optimise the acclimatisation of in-vitro grown rooted plantlets of Ocimum sanctum. For this study different types of potting mix in assorted ratios were used  to obtain best supporting media for the acclimatisation, A7 media containing soil : farmyard manure (75:25) and A1 media containing (100%) sand were found best supporting medium for the acclimatisation and hardening of Ocimum sanctum.    

2013 ◽  
Vol 5 (2) ◽  
pp. 220-225 ◽  
Author(s):  
Kanakapura K. NAMITHA ◽  
Pradeep S. NEGI

A highly reproducible in vitro regeneration method for tomato (Lycopersicon esculentum Mill.) cultivar ‘Arka Ahuti’ was established by using hypocotyl, leaf and cotyledon explants from in vitro raised seedlings on Murashige and Skoog medium supplemented with different concentrations and combinations of hormones 6-Benzylamino purine (2 to 4 mg/L) and Indole-3-acetic acid (0.1 to 1 mg/L). The medium supplemented with 2 mg/L 6-benzylamino purine and 0.1 mg/L indole-3-acetic acid was found to be the best for inducing direct shoot regeneration and multiple shoots per explant from hypocotyl explants. Callus induction was observed in all the explants and regeneration of shoots was also promoted by all these combinations. Shoots were transferred to the elongation medium which also induced 100% rooting. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established for ‘Arka Ahuti’ cultivar of tomato for obtaining direct regeneration using hypocotyl, leaf and cotyledon as explants.


2009 ◽  
Vol 81 (3) ◽  
pp. 489-496 ◽  
Author(s):  
José Daniel Lopes ◽  
Mario Mariano

Characterization of the origin, properties, functions and fate of cells is a fundamental task for the understanding of physiological and pathological phenomena. Despite the bulk of knowledge concerning the diverse characteristics of mammalian cells, some of them, such as B-1 cells, are still poorly understood. Here we report the results obtained in our laboratory on these cells in the last 10 years. After showing that B-1 cells could be cultured and amplified in vitro, a series of experiments were performed with these cells. They showed that B1 cells reside mostly in the peritoneal and pleural cavities, migrate to distant inflammatory foci, coalesce to form giant cells and participate in granuloma formation, both in vitro and in vivo. They are also able to present antigens to immunologically responsive cells and are endowed with regulatory properties. Further, we have also shown that these cells facilitate different types of infection as well as tumor growth and spreading. These data are presently reviewed pointing to a pivotal role that these cells may play in innate and acquired immunity.


2021 ◽  
Vol 17 (5) ◽  
pp. 495-503
Author(s):  
Shamsiah Abdullah ◽  
Siti Nurain Roslan

One of the challenges related to propagation of Arenga pinnata is its lengthy period of seed dormancy. In this study, in vitro regeneration was carried out to determine the effect of hormonal treatment on the embryo explant of Arenga pinnata. Embryos were surface sterilized and cultured into different media supplemented with various hormones concentrations and combinations. Each treatment contained of Kinetin (KN) hormone (1.0, 2.0, and 3.0 mg/l) and in combination with indole-3-acetic acid (IAA) of 0.1, 0.2, 0.3 mg/l. The height of plumule and length of radical was observed and recorded. Treatment 8 (3 mg/ml KN + 0.1 mg/ml IAA) showed 59.09% in plumule height increment while treatment 4 (1 mg/ml KN + 0.3 mg/ml IAA) showed the highest radical increments with 93.62%. The knowledge gained in this study consequently helps us to better understand the role of KN and IAA in the in vitro regeneration protocol. Since in vitro method able to produce higher number of in vitro seedlings at one time, it is important to establish the in vitro regeneration protocol for this plant.


2018 ◽  
Vol 12 (2) ◽  
pp. 117
Author(s):  
Cecília Moreira Serafim ◽  
Arlene Santisteban Campos ◽  
Priscila Bezerra Dos Santos Melo ◽  
Ana Cecília Ribeiro de Castro ◽  
Ana Cristina Portugal Pinto de Carvalho

Faced with the demand for plants potted for their foliage, Anthurium maricense is seen as a viable option. However, most of the studies on obtaining micropropagated plantlets are for A. andraeanum, with nothing yet reported for A. maricense. The aim of this study therefore, was to evaluate the effect of four cytokinins in different concentrations, on the in vitro induction of shoots from nodal segments of A. maricense. The experimental design was completely randomised in a 4 x 4 factorial scheme, with four cytokinins (BAP, ZEA, CIN and 2iP) and 4 concentrations (0, 2.22, 4.44 and 6.66 μM), for a total of 16 treatments, with 6 replications of five test tubes, and using one nodal segment. Cultures were kept in a growth room at 25 ± 2°C, a photoperiod of 16 h and a light intensity of 30 μmolm-2 s-1 for 60 days. After this period, the number of shoots formed per node was evaluated. The addition of a cytokinin to the culture medium was determinant for the in vitro regeneration of shoots in A. maricense. The greatest estimated number of shoot formations in A. maricense were obtained in the culture media containing ZEA (3.87) and BAP (3.30), both at concentration of 6.66 μM.


2018 ◽  
Vol 10 (2) ◽  
pp. 234
Author(s):  
Cassio G. Freire ◽  
João P. P. Gardin ◽  
Cesar M. Baratto ◽  
Renato L. Vieira ◽  
Simone S. Werner

Red Araçá’s (Psidium cattleianum) micropropagation processes have shown enormous potential both in terms of research and as a sustainable native resource to be used in the areas of food production, ecology, and pharmacology. Currently, however, despite that potential, research efforts involving this myrtaceae, native to the Brazilian Atlantic Forest, have been scarce. With that in mind, this study set out to establish micropropagation techniques that would allow the development of a feasible protocol to be used with Red Araçá, achieving its mircropropagation from in vitro germinated seeds. Different types of explants were tested for in vitro establishment. For the multiplication of nodal segments, different concentrations of BAP and IAA combinations were tested in an MS medium. Using the same medium, different concentrations of ampicillin were applied in order to determine its influence on the decontamination of the apical segments. The BAP and IAA combinations were also used to test their effects on the in vitro explants’ development and rooting. During pre-acclimatization, survival of in vitro rooted plants was tested in a nebulizer chamber, using a commercial substrate and that same substrate mixed with washed sand (1:1). In essence, it was indeed possible to develop a complete protocol for the micropropagation of the Red Araçá from seedlings obtained by in vitro germination. The in vitro introduction of the Red Araçá was rather efficient, independently of the type of explants used. As the BAP and IAA concentrations increased, so did the in vitro seedlings’ development (7 leaves explant-1) and rooting (67%). Additionally, the in vitro rooted plants exhibited a high rate of survival (80%) in the pre-acclimatization phase, independently of the substrate used.


2018 ◽  
Vol 53 (2) ◽  
pp. 133-138 ◽  
Author(s):  
S Khan ◽  
TA Banu ◽  
S Akter ◽  
B Goswami ◽  
M Islam ◽  
...  

An efficient in vitro regeneration system was developed for Rauvolfia serpentina L. through direct and indirect organogenesis from nodal and leaf explants. Among the different growth regulators, MS medium supplemented with 2.0 mg/l BAP, 0.5mg/l IAA and 0.02mg/l NAA found best for the multiple shoot formation from nodal segments. In this combination 98% explants produced multiple shoots and the average number of shoots per explants is 13∙4. The frequency of callus induction and multiple shoot induction from leaves was highest 88% in MS medium supplemented with 2.0 mg/l BAP, where mean number of shoots/explants was 12.5. The highest frequency of root induction (80%) and mean number of roots/plantlets (10) were obtained on half strength of MS medium containing 0.2 mg/l IBA. The rooted plantlets were transferred for hardening following acclimatization and finally were successfully established in the field.Bangladesh J. Sci. Ind. Res.53(2), 133-138, 2018


2003 ◽  
Vol 30 (2) ◽  
pp. 75-79 ◽  
Author(s):  
H. Y. Rey ◽  
L. A. Mroginski

Abstract The in vitro regeneration potential of shoot apical tips (2 to 3 mm in length), meristems (0.3 to 0.5 mm in length), and nodal segments (4 to 7 mm long with an axillary bud) of diploid (2n = 2x = 20) and triploid (2n = 3x = 30) cytotypes of Arachis pintoi was evaluated. Explants were cultured on MS medium supplemented with different concentrations and combinations of naphthaleneacetic acid (NAA) and benzyladenine (BA). In one experiment the effect of gibberellic acid was tested. The cultures were done in liquid and solid media. Plant regeneration can be readily achieved from all explants in one step of 30 d culture on MS + 0.01 mg/L each of NAA and BA or two steps consisting of 1) shoots regeneration through culture of explants on MS + 0.01 mg/L each of NAA and BA, and 2) induction of rooting in regenerated shoots by reculture on MS + 0.01 mg/L NAA. The plantlets were successfully transferred to pots in a greenhouse.


1970 ◽  
Vol 20 (2) ◽  
pp. 145-155 ◽  
Author(s):  
Rita Sarah Borna ◽  
M. I. Hoque ◽  
R. H. Sarker

Genetic transformation using nodal and internodal segments from three economically important potato (Solanum tuberosum L.) varieties namely, Diamant, Cardinal and Granola was conducted using an Agrobacterium tumefaciens strain LBA4404 harbouring binary plasmid pBI12 containing the GUS and nptII genes. Node and internodal segments were used for direct regeneration as well as regeneration with the intervention of callus. best responses were  obtained for direct regeneration of shoots when the explants were cultured on MS supplemented with 4.0 mg/l BAP +1.0 mg/l IAA, 1.5 mg/l BAP  + 0.5 mg/l IAA and 5.0 mg/l BAP +1.0 mg/l IAA in Diamant, Cardinal  and  Granola, respectively. In Diamant spontaneous in vitro microtuberization was obtained from these proliferated shoots. Further culturing of these in vitro grown green microtubers regenerated a large number of shoots on MS containing 4.0 mg/l BAP +1.0 mg/l IAA. By combining the best treatments, this protocol yielded an average transformation rate of 87% of treared explants. Stable expression of GUS gene was visualized in the various parts of transformed shoots through histochemical assay. Genomic DNA was isolated from transformed shoots and stable integration of the GUS and nptII genes was confirmed by PCR analysis.   Key words:  Potato, in vitro regeneration, transformation   D.O.I. 10.3329/ptcb.v20i2.6894   Plant Tissue Cult. & Biotech. 20(2): 145-155, 2010 (December)


2015 ◽  
Vol 43 (2) ◽  
pp. 542-546 ◽  
Author(s):  
Giovanni IAPICHINO ◽  
Marcello AIRÒ ◽  
Emilio LO PRESTI ◽  
Leo SABATINO

Genista aetnensis [(Raf. ex Biv.)DC] is a large deciduous shrub or small tree native to the Italian islands of Sardinia and Sicily. Being winter hardy and characterized by high plasticity in altitude and ecology, the species is grown in gardens and landscaping, both for flower and for its attractive shape. Genista species are generally propagate by seed or semi-hardwood cuttings. In this report an efficient in vitro technique for propagation of G. aetnensis was investigated. Multiple shoots were induced on nodal segments of a mature plant of Genista aetnensis. The Murashige and Skoog medium, augmented with different concentrations of N-6-benzyladenine either singly or in combination with indole-3-acetic acid, as potential medium for shoot multiplication by nodal segments was tested. In the following experiment equal molar concentrations of four cytokinins (2-isopenthenyladenine, kinetin, zeatin and N-6-benzyladenine) were tested for ability to induce axillary shoot development from single node stem segments. The highest rate of axillary shoot proliferation was induced on the medium supplemented with 0.44 µM BA. Growth regulator requirements for shoot proliferation in G. aetnensis were satisfied by BA alone. Explants were divided, subcultured and continued to proliferate shoots. A proliferation rate of 3.5 shoots per single node explants every four weeks occurred. Seven indole-3-acetic acid concentrations (0, 0.23, 0.45, 0.91, 1.82, 3.64 or 7.29 µM) were tested to determine the optimum conditions for in vitro rooting of microshoots. The highest rooting percentage was obtained with indole-3-acetic acid at 3.64 mM (57%). Eighty percent of the in vitro rooted plantlets were successfully established in soil. This micropropagation system of G. aetnensis based on axillary shoot development from nodal segments followed by in vitro rooting should be preferred for rapid and efficient mass propagation of selected clones and could represent an alternative method to sexual and conventional asexual propagation.


2014 ◽  
Vol 20 ◽  
pp. 99-108 ◽  
Author(s):  
MS Islam ◽  
MA Bari

Context: The application of encapsulated shoot tips and nodal segments may contribute to the protection of rare and threatened medicinal plants. Although the artificial seed technique has been reported for more than two decades, for medicinal plants this method has not been developed sufficiently. The main limitations in conventional propagation of some species with medicinal value are: reduced endosperm, low germination rate and seedless varieties. The above mentioned reasons indicate the need for the production of artificial seeds as a technique which combines the advantages of clonal multiplication with those of seed propagation and storage. Objectives: The objective of the present investigation was to standardize artificial seed production technology taking shoot tip and nodal explants in Mentha arvensis and its in vitro regeneration Materials and Methods: Sodium alginate beads were produced by encapsulation of shoot tip and nodal segments of the plant M. arvensis. MS medium was used as basal medium with agar and sodium alginate was used as gelling agent accompanied by CaCl2 solution. Results: Different concentrations and combinations of BAP, Kin and NAA were used in alginate bead in MS basal medium. Among the different concentrations of phytohormone, highest 80% of shoot formation was observed in MS medium containing 2.0 mg/l BAP + 0.2 mg/l NAA from nodal segments of M. arvensis. Highest average number of shoot 9.87 ± 0.58 formation was obtained in the same medium but highest length of shoot 6.27 ± 0.29 cm was found in the medium having 1.0 mg/l BAP + 0.5 mg/l NAA. Conclusion: The present investigation clearly established and demonstrated the method of obtaining the artificial seed production in M. arvensis supported by different hormone concentrations DOI: http://dx.doi.org/10.3329/jbs.v20i0.17722 J. bio-sci.  20:  99-108, 2012


Sign in / Sign up

Export Citation Format

Share Document