scholarly journals Frequency of Fires in the Miombo Woodland of the Gilé National Park. Province of Zambezia

2021 ◽  
Vol 12 (2) ◽  
pp. 11
Author(s):  
Luís A. Pungulanhe ◽  
Natasha S. Ribeiro ◽  
Tomázia M. C. Veterano

Fires occur in a widespread manner in various types of vegetation cover at national level, and are often associated with human hunting, grazing and above all the practice of itinerant agriculture. With the purpose to propose the map of frequency of fire, remote sensing data was collected from 2014 to 2018, using the Moderate Resolution Image Spectroradiometer (MODIS) of the burned area (MCD64A1), which allowed the construction of the map of frequency and intensity of fires, associated with data collected in 59 plots on field. It was observed that the Gilé National Park (PNAG) records an average fire frequency of 0.38 times/year and the return interval of 5.38 years, and an average fire return interval of 2.62 years. During the study period, the PNAG burned 92.8% of the area, which means that on average for each year it burned about 18.56% of its area, there are no significant differences in relation to the area burned per year (p> 0.942037) but there are significant differences in relation to the area burned per month (p <1.24e-07).

2019 ◽  
Vol 12 (1) ◽  
pp. 5 ◽  
Author(s):  
Yenni Vetrita ◽  
Mark A. Cochrane

Indonesia’s converted peatland areas have a well-established fire problem, but limited studies have examined the frequency with which they are burning. Here, we quantify fire frequency in Indonesia’s two largest peatland regions, Sumatra and Kalimantan, during 2001–2018. We report, annual areas burned, total peatland area affected by fires, amount of recurrent burning and associations with land-use and land-cover (LULC) change. We based these analyses on Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua combined burned area and three Landsat-derived LULC maps (1990, 2007, and 2015) and explored relationships between burning and land-cover types. Cumulative areas burned amounted nearly half of the surface areas of Sumatra and Kalimantan but were concentrated in only ~25% of the land areas. Although peatlands cover only 13% of Sumatra and Kalimantan, annual percentage of area burning in these areas was almost five times greater than in non-peatlands (2.8% vs. 0.6%) from 2001 to 2018. Recurrent burning was more prominent in Kalimantan than Sumatra. Average fire-return intervals (FRI) in peatlands of both regions were short, 28 and 45 years for Kalimantan and Sumatra, respectively. On average, forest FRI were less than 50 years. In non-forest areas, Kalimantan had shorter average FRI than Sumatra (13 years vs. 40 years), with ferns/low shrub areas burning most frequently. Our findings highlight the significant influence of LULC change in altering fire regimes. If prevalent rates of burning in Indonesia’s peatlands are not greatly reduced, peat swamp forest will disappear from Sumatra and Kalimantan in the coming decades.


Author(s):  
Shahir Masri ◽  
Erica Scaduto ◽  
Yufang Jin ◽  
Jun Wu

Wildfires can be detrimental to urban and rural communities, causing impacts in the form of psychological stress, direct physical injury, and smoke-related morbidity and mortality. This study examined the area burned by wildfires over the entire state of California from the years 2000 to 2020 in order to quantify and identify whether burned area and fire frequency differed across Census tracts according to socioeconomic indicators over time. Wildfire data were obtained from the California Fire and Resource Assessment Program (FRAP) and National Interagency Fire Center (NIFC), while demographic data were obtained from the American Community Survey. Results showed a doubling in the number of Census tracts that experienced major wildfires and a near doubling in the number of people residing in wildfire-impacted Census tracts, mostly due to an over 23,000 acre/year increase in the area burned by wildfires over the last two decades. Census tracts with a higher fire frequency and burned area had lower proportions of minority groups on average. However, when considering Native American populations, a greater proportion resided in highly impacted Census tracts. Such Census tracts also had higher proportions of older residents. In general, high-impact Census tracts tended to have higher proportions of low-income residents and lower proportions of high-income residents, as well as lower median household incomes and home values. These findings are important to policymakers and state agencies as it relates to environmental justice and the allocation of resources before, during, and after wildfires in the state of California.


2020 ◽  
Author(s):  
Eufrásio Nhongo ◽  
Denise Fontana ◽  
Laurindo Guasselli

AbstractWildfires are among the biggest factors of ecosystem change. Knowledge of fire regime (fire frequency, severity, intensity, seasonality, and distribution pattern) is an important factor in wildfire management. This paper aims to analyze the spatiotemporal patterns of fires and burned areas in the Niassa Reserve between 2002-2015 using MODIS data, active fire product (MCD14ML) and burned area product (MCD64A1). For this, the annual and monthly frequencies, the trend of fires and the frequency by types of forest cover were statistically analyzed. For the analysis of the spatial dynamics of forest fires we used the Kernel density (Fixed Method). The results show a total of 20.449 forest fires and 171.067 km2 of burned areas in the period 2002-2015. Fire incidents were highest in 2015, while the largest burned areas were recorded in 2007. The relationship between increased fires and burned areas is not linear. There was a tendency for fires to increase, while for burnt areas there was stabilization. Forest fires start in May and end in December. August-October are the most frequent period, peaking in September. Fires occur predominantly in deciduous forests and mountain forests because of the type of vegetation and the amount of dry biomass. There is a monthly spatial dynamics of wildfires from east to west in the reserve. This behavior is dependent on vegetation cover type, fuel availability, and senescence.


2014 ◽  
Vol 14 (1) ◽  
pp. 53-66 ◽  
Author(s):  
J. Bedia ◽  
S. Herrera ◽  
J. M. Gutiérrez

Abstract. Most fire protection agencies throughout the world have developed forest fire risk forecast systems, usually building upon existing fire danger indices and meteorological forecast data. In this context, the daily predictability of wildfires is of utmost importance in order to allow the fire protection agencies to issue timely fire hazard alerts. In this study, we address the predictability of daily fire occurrence using the components of the Canadian Fire Weather Index (FWI) System and related variables calculated from the latest ECMWF (European Centre for Medium Range Weather Forecasts) reanalysis, ERA-Interim. We develop daily fire occurrence models in peninsular Spain for the period 1990–2008 and, considering different minimum burned area thresholds for fire definition, assess their ability to reproduce the inter-annual fire frequency variability. We based the analysis on a phytoclimatic classification aiming the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climate/fuel conditions. We then extend the analysis in order to assess the predictability of monthly burned areas. The sensitivity of the models to the level of spatial aggregation of the data is also evaluated. Additionally, we investigate the gain in model performance with the inclusion of socioeconomic and land use/land cover (LULC) covariates in model formulation. Fire occurrence models have attained good performance in most of the phytoclimatic zones considered, being able to faithfully reproduce the inter-annual variability of fire frequency. Total area burned has exhibited some dependence on the meteorological drivers, although model performance was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, highlighting the adequacy of the FWI system for fire occurrence prediction in the study area. The results were improved when using aggregated data across regions compared to when data were sampled at the grid-box level. The inclusion of socioeconomic and LULC covariates contributed marginally to the improvement of the models, and in most cases attained no relevant contribution to total explained variance – excepting northern Spain, where anthropogenic factors are known to be the major driver of fires. Models of monthly fire counts performed better in the case of fires larger than 0.1 ha, and for the rest of the thresholds (1, 10 and 100 ha) the daily occurrence models improved the predicted inter-annual variability, indicating the added value of daily models. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as a response variable. Our results leave the door open to the development a more complex modelling framework based on daily data from numerical climate model outputs based on the FWI system.


2013 ◽  
Vol 1 (5) ◽  
pp. 4891-4924 ◽  
Author(s):  
J. Bedia ◽  
S. Herrera ◽  
J. M. Gutiérrez

Abstract. We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990–2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter–annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness of ERA-Interim reanalysis data for the reconstruction of historical fire-climate relationships at the scale of analysis. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as response variable.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 32
Author(s):  
Judy A. Foulkes ◽  
Lynda D. Prior ◽  
Steven W. J. Leonard ◽  
David M. J. S. Bowman

Australian montane sclerophyll shrubland vegetation is widely considered to be resilient to infrequent severe fire, but this may not be the case in Tasmania. Here, we report on the vegetative and seedling regeneration response of a Tasmanian non-coniferous woody montane shrubland following a severe fire, which burned much of the Great Pine Tier in the Central Plateau Conservation Area during the 2018–2019 fire season when a historically anomalously large area was burned in central Tasmania. Our field survey of a representative area burned by severe crown fire revealed that more than 99% of the shrubland plants were top-killed, with only 5% of the burnt plants resprouting one year following the fire. Such a low resprouting rate means the resilience of the shrubland depends on seedling regeneration from aerial and soil seedbanks or colonization from plants outside the burned area. Woody species’ seedling densities were variable but generally low (25 m−2). The low number of resprouters, and reliance on seedlings for recovery, suggest the shrubland may not be as resilient to fire as mainland Australian montane shrubland, particularly given a warming climate and likely increase in fire frequency.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon Plank ◽  
Francesco Marchese ◽  
Nicola Genzano ◽  
Michael Nolde ◽  
Sandro Martinis

AbstractSatellite-based Earth observation plays a key role for monitoring volcanoes, especially those which are located in remote areas and which very often are not observed by a terrestrial monitoring network. In our study we jointly analyzed data from thermal (Moderate Resolution Imaging Spectrometer MODIS and Visible Infrared Imaging Radiometer Suite VIIRS), optical (Operational Land Imager and Multispectral Instrument) and synthetic aperture radar (SAR) (Sentinel-1 and TerraSAR-X) satellite sensors to investigate the mid-October 2019 surtseyan eruption at Late’iki Volcano, located on the Tonga Volcanic Arc. During the eruption, the remains of an older volcanic island formed in 1995 collapsed and a new volcanic island, called New Late’iki was formed. After the 12 days long lasting eruption, we observed a rapid change of the island’s shape and size, and an erosion of this newly formed volcanic island, which was reclaimed by the ocean two months after the eruption ceased. This fast erosion of New Late’iki Island is in strong contrast to the over 25 years long survival of the volcanic island formed in 1995.


1993 ◽  
Vol 23 (6) ◽  
pp. 1213-1222 ◽  
Author(s):  
E.A. Johnson ◽  
D.R. Wowchuk

In this paper we present evidence for a large-scale (synoptic-scale) meteorological mechanism controlling the fire frequency in the southern Canadian Rocky Mountains. This large-scale control may explain the similarity in average fire frequencies and timing of change in average fire frequencies for the southern Canadian Rocky Mountains. Over the last 86 years the size distribution of fires (annual area burned) in the southern Canadian Rockies was distinctly bimodal, with a separation between small- and large-fire years at approximately 10–25 ha annual area burned. During the last 35 years, large-fire years had significantly lower fuel moisture conditions and many mid-tropospheric surface-blocking events (high-pressure upper level ridges) during July and August (the period of greatest fire activity). Small-fire years in this period exhibited significantly higher fuel moisture conditions and fewer persistent mid-tropospheric surface-blocking events during July and August. Mid-tropospheric surface-blocking events during large-fire years were teleconnected (spatially and temporally correlated in 50 kPa heights) to upper level troughs in the North Pacific and eastern North America. This relationship takes the form of the positive mode of the Pacific North America pattern.


2021 ◽  
Vol 4 ◽  
Author(s):  
Maximilian Hartung ◽  
Geovana Carreño-Rocabado ◽  
Marielos Peña-Claros ◽  
Masha T. van der Sande

Wildfires are becoming increasingly frequent and devastating in many tropical forests. Although seasonally dry tropical forests (SDTF) are among the most fire-threatened ecosystems, their long-term response to frequent wildfires remains largely unknown. This study is among the first to investigate the resilience in response to fire of the Chiquitano SDTF in Bolivia, a large ecoregion that has seen an unprecedented increase in fire intensity and frequency in recent years. We used remote sensing data to assess at a large regional and temporal scale (two decades) how fire frequency and environmental factors determine the resilience of the vegetation to fire disturbance. Resilience was measured as the resistance to fire damage and post-fire recovery. Both parameters were monitored for forested areas that burned once (F1), twice (F2), and three times (F3) between 2000 and 2010 and compared to unburned forests. Resistance and recovery were analyzed using time series of the Normalized Burn Ratio (NBR) index derived from Landsat satellite imagery, and climatic, topographic, and a human development-related variable used to evaluate their influence on resilience. The overall resilience was lowest in forests that burned twice and was higher in forests that burned three times, indicating a possible transition state in fire resilience, probably because forests become increasingly adapted during recurrent fires. Climatic variables, particularly rainfall, were most influential in determining resilience. Our results indicate that the Chiquitano dry forest is relatively resilient to recurring fires, has the capacity to recover and adapt, and that climatic differences are the main determinants of the spatial variation observed in resilience. Nevertheless, further research is needed to understand the effect of the higher frequency and intensity of fires expected in the future due to climate change and land use change, which may pose a greater threat to forest resilience.


2021 ◽  
Vol 30 (4) ◽  
pp. 255
Author(s):  
Jon E. Keeley ◽  
Anne Pfaff ◽  
Anthony C. Caprio

History of prescription burning and wildfires in the three Sierra Nevada National Park Service (NPS) parks and adjacent US Forest Service (USFS) forests is presented. Annual prescription (Rx) burns began in 1968 in Sequoia and Kings Canyon National Parks, followed by Yosemite National Park and Lassen Volcanic National Park. During the last third of the 20th century, USFS national forests adjacent to these parks did limited Rx burns, accounting for very little area burned. However, in 2004, an aggressive annual burn program was initiated in these national forests and in the last decade, area burned by planned prescription burns, relative to area protected, was approximately comparable between these NPS and USFS lands. In 1968, the NPS prescription burning program was unique because it coupled planned Rx burns with managing many lightning-ignited fires for resource benefit. From 1968 to 2017, these natural fires managed for resource benefit averaged the same total area burned as planned Rx burns in the three national parks; thus, they have had a substantial impact on total area burned by prescription. In contrast, on USFS lands, most lightning-ignited fires have been managed for suppression, but increasing attention is being paid to managing wildfires for resource benefit.


Sign in / Sign up

Export Citation Format

Share Document