Locomotion Control of a Humanoid Robot using a Biped Walking Pattern based on Physical Interaction

2021 ◽  
Vol 27 (9) ◽  
pp. 668-675
Author(s):  
Hyun-Min Joe
2013 ◽  
Vol 10 (04) ◽  
pp. 1350024 ◽  
Author(s):  
SANGYONG LEE ◽  
JUNG-YUP KIM ◽  
MUNSANG KIM

This paper deals with the mechanical design, system integration, and dynamic walking algorithm of KIBO, an emotional biped humanoid robot that has a facial expression mechanism and various human-interactive devices. To emphasize the aesthetic features and marketability of KIBO, the mechanical design was performed after the exterior design stage to conform to all requirements, particularly constraints imposed by the external appearance and human-like link dimensions. For flexible biped walking, a walking pattern generator with variable walking parameters was developed. The walking pattern generator generates both a walking pattern and a corresponding reference zero-moment point (ZMP) pattern simultaneously. For stable biped walking, a walking control strategy using the ZMP and inertial sensor data was developed. In the strategy, we newly proposed a dual ZMP control approach and a posture control approach using an equivalent body inclination, which is calculated from the ZMP and inertial sensor data for robust walking on non-level ground. Finally, the hardware, software architecture, and dynamic walking performance of KIBO were verified through several walking experiments.


Author(s):  
Wenqi Hou ◽  
Jian Wang ◽  
Jianwen Wang ◽  
Hongxu Ma

In this paper, a novel online biped walking gait pattern generating method with contact consistency is proposed. Generally, it’s desirable that there is no foot-ground slipping during biped walking. By treating the hip of the biped robot as a linear inverted pendulum (LIP), a foot placement controller that takes the contact consistency into account is proposed to tracking the desired orbit energy. By selecting the hip’s horizontal locomotion as the parameter, the trajectories in task space for walking are planned. A task space controller without calculating the inversion of inertial matrix is presented. Simulation experiments are implemented on a virtual 5-link point foot biped robot. The results show the effectiveness of the walking pattern generating method which can realize a stable periodic gait cycle without slipping and falling even suffering a sudden disturbance.


Sign in / Sign up

Export Citation Format

Share Document