scholarly journals Object Detection Model, Image Data and Results from the “When Computers Dream of Charcoal: Using Deep Learning, Open Tools and Open Data to Identify Relict Charcoal Hearths in and Around State Game Lands in Pennsylvania” Paper

2021 ◽  
Vol 9 ◽  
Author(s):  
Jeff Blackadar ◽  
Benjamin Carter ◽  
Weston Conner

2020 ◽  
Vol 12 (6) ◽  
pp. 1014
Author(s):  
Jingchao Jiang ◽  
Cheng-Zhi Qin ◽  
Juan Yu ◽  
Changxiu Cheng ◽  
Junzhi Liu ◽  
...  

Reference objects in video images can be used to indicate urban waterlogging depths. The detection of reference objects is the key step to obtain waterlogging depths from video images. Object detection models with convolutional neural networks (CNNs) have been utilized to detect reference objects. These models require a large number of labeled images as the training data to ensure the applicability at a city scale. However, it is hard to collect a sufficient number of urban flooding images containing valuable reference objects, and manually labeling images is time-consuming and expensive. To solve the problem, we present a method to synthesize image data as the training data. Firstly, original images containing reference objects and original images with water surfaces are collected from open data sources, and reference objects and water surfaces are cropped from these original images. Secondly, the reference objects and water surfaces are further enriched via data augmentation techniques to ensure the diversity. Finally, the enriched reference objects and water surfaces are combined to generate a synthetic image dataset with annotations. The synthetic image dataset is further used for training an object detection model with CNN. The waterlogging depths are calculated based on the reference objects detected by the trained model. A real video dataset and an artificial image dataset are used to evaluate the effectiveness of the proposed method. The results show that the detection model trained using the synthetic image dataset can effectively detect reference objects from images, and it can achieve acceptable accuracies of waterlogging depths based on the detected reference objects. The proposed method has the potential to monitor waterlogging depths at a city scale.



Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2611
Author(s):  
Andrew Shepley ◽  
Greg Falzon ◽  
Christopher Lawson ◽  
Paul Meek ◽  
Paul Kwan

Image data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize access to deep learning technologies by providing an easy-to-use software application allowing non-technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists with the ability to train customised models using publicly available images and/or their own images without specific technical expertise. Auto-annotation and annotation editing functionalities minimize the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and object detection, allowing ecologists to access deep learning technologies usually only available to computer scientists, on their own device, customised for their application, without sharing intellectual property or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will improve ecological image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources, particularly for camera trap images. Ease of training and use of transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.



Author(s):  
Vibhavari B Rao

The crime rates today can inevitably put a civilian's life in danger. While consistent efforts are being made to alleviate crime, there is also a dire need to create a smart and proactive surveillance system. Our project implements a smart surveillance system that would alert the authorities in real-time when a crime is being committed. During armed robberies and hostage situations, most often, the police cannot reach the place on time to prevent it from happening, owing to the lag in communication between the informants of the crime scene and the police. We propose an object detection model that implements deep learning algorithms to detect objects of violence such as pistols, knives, rifles from video surveillance footage, and in turn send real-time alerts to the authorities. There are a number of object detection algorithms being developed, each being evaluated under the performance metric mAP. On implementing Faster R-CNN with ResNet 101 architecture we found the mAP score to be about 91%. However, the downside to this is the excessive training and inferencing time it incurs. On the other hand, YOLOv5 architecture resulted in a model that performed very well in terms of speed. Its training speed was found to be 0.012 s / image during training but naturally, the accuracy was not as high as Faster R-CNN. With good computer architecture, it can run at about 40 fps. Thus, there is a tradeoff between speed and accuracy and it's important to strike a balance. We use transfer learning to improve accuracy by training the model on our custom dataset. This project can be deployed on any generic CCTV camera by setting up a live RTSP (real-time streaming protocol) and streaming the footage on a laptop or desktop where the deep learning model is being run.



Author(s):  
Limu Chen ◽  
Ye Xia ◽  
Dexiong Pan ◽  
Chengbin Wang

<p>Deep-learning based navigational object detection is discussed with respect to active monitoring system for anti-collision between vessel and bridge. Motion based object detection method widely used in existing anti-collision monitoring systems is incompetent in dealing with complicated and changeable waterway for its limitations in accuracy, robustness and efficiency. The video surveillance system proposed contains six modules, including image acquisition, detection, tracking, prediction, risk evaluation and decision-making, and the detection module is discussed in detail. A vessel-exclusive dataset with tons of image samples is established for neural network training and a SSD (Single Shot MultiBox Detector) based object detection model with both universality and pertinence is generated attributing to tactics of sample filtering, data augmentation and large-scale optimization, which make it capable of stable and intelligent vessel detection. Comparison results with conventional methods indicate that the proposed deep-learning method shows remarkable advantages in robustness, accuracy, efficiency and intelligence. In-situ test is carried out at Songpu Bridge in Shanghai, and the results illustrate that the method is qualified for long-term monitoring and providing information support for further analysis and decision making.</p>



Author(s):  
Weiju Chen ◽  
WanChen Wu ◽  
Hao-Wei Chang ◽  
Wei-Liang Lin ◽  
Changhua Yang ◽  
...  


2021 ◽  
Vol 14 (1) ◽  
pp. 103
Author(s):  
Dongchuan Yan ◽  
Hao Zhang ◽  
Guoqing Li ◽  
Xiangqiang Li ◽  
Hua Lei ◽  
...  

The breaching of tailings pond dams may lead to casualties and environmental pollution; therefore, timely and accurate monitoring is an essential aspect of managing such structures and preventing accidents. Remote sensing technology is suitable for the regular extraction and monitoring of tailings pond information. However, traditional remote sensing is inefficient and unsuitable for the frequent extraction of large volumes of highly precise information. Object detection, based on deep learning, provides a solution to this problem. Most remote sensing imagery applications for tailings pond object detection using deep learning are based on computer vision, utilizing the true-color triple-band data of high spatial resolution imagery for information extraction. The advantage of remote sensing image data is their greater number of spectral bands (more than three), providing more abundant spectral information. There is a lack of research on fully harnessing multispectral band information to improve the detection precision of tailings ponds. Accordingly, using a sample dataset of tailings pond satellite images from the Gaofen-1 high-resolution Earth observation satellite, we improved the Faster R-CNN deep learning object detection model by increasing the inputs from three true-color bands to four multispectral bands. Moreover, we used the attention mechanism to recalibrate the input contributions. Subsequently, we used a step-by-step transfer learning method to improve and gradually train our model. The improved model could fully utilize the near-infrared (NIR) band information of the images to improve the precision of tailings pond detection. Compared with that of the three true-color band input models, the tailings pond detection average precision (AP) and recall notably improved in our model, with the AP increasing from 82.3% to 85.9% and recall increasing from 65.4% to 71.9%. This research could serve as a reference for using multispectral band information from remote sensing images in the construction and application of deep learning models.



2021 ◽  
Vol 40 ◽  
pp. 01005
Author(s):  
Mudit Shrivastava ◽  
Rahul Jadhav ◽  
Pranjal Singhal ◽  
Savita R. Bhosale

As name characterizes understanding of a number plate accordingly, from past decades the use vehicles expanded rapidly, taking into account of this such a majority number of issues like overseeing and controlling trafficante keeping watch on autos and managing parking area zones to overcome this tag recognizer programming is required. The proposed work aims to detect speed of a moving vehicle through its license plate. It will fetch vehicle owner details with the help of CNN model. In this project the main focus is to detect a moving car whenever it crosses dynamic markings. It uses Tensor-flow with an SSD object detection model to detect cars and from the detection in each frame the license plate gets detected and each vehicle can be tracked across a video and can be checked if it crossed the markings made in program itself and hence speed of that vehicle can be calculated. The detected License plate will be forwarded to trained model where PyTesseract is used, which will convert image to text.



2021 ◽  
Author(s):  
Sixian Chan ◽  
Jingcheng Zheng ◽  
Lina Wang ◽  
Tingting Wang ◽  
Xiaolong Zhou ◽  
...  

Abstract Deep learning models have become the mainstream algorithm for processing computer vision tasks. In object detection tasks, the detection box is usually set as a rectangular box aligned with the coordinate axis, so as to achieve the complete package of the object. However, when facing some objects with large aspect ratio and angle, the bounding box has to become large, which makes the bounding box contain a large amount of useless background information. In this study, a different approach is taken, using a method based on YOLOv5, the angle information dimension is increased in head part and angle regression added at the same time of the border regression, combining ciou and smoothl1 to calculate the bounding box loss, so that the resulting border box fits the actual object more closely. At the same time, the original dataset tags are also preprocessed to calculate the angle information of interest. The purpose of these improvements is to realize object detection with angles in remote-sensing images, especially for objects with large aspect ratios, such as ships, airplanes, and automobiles. Compared with the traditional object detection model based on deep learning, experimental results show that the proposed method has a unique effect in detecting rotating objects.



Author(s):  
Dasom Seo ◽  
Kyoung-Chul Kim ◽  
Meonghun Lee ◽  
Kyung-Do Kwon ◽  
Gookhwan Kim


Sign in / Sign up

Export Citation Format

Share Document