scholarly journals Development of high strength conductive stainless steel wire for springs.

Author(s):  
Susumu YAMAMOTO ◽  
Kazuyoshi SATO
Author(s):  
Xinling Wang ◽  
Guanghua Yang ◽  
Wenwen Qian ◽  
Ke Li ◽  
Juntao Zhu

AbstractEngineered cementitious composites (ECC) show the distinguished characteristics of high post-cracking resistance and ductility. High-strength stainless steel wire rope (HSSSWR) has been successfully used for restoring or strengthening of existing structures. By combining the advantages of these two materials, a new composite system formed by embedding HSSSWR into ECC was proposed and expected to be a promising engineering material for repair or strengthening of structures. To investigate the tensile failure mechanism and mechanical properties of HSSSWR-reinforced ECC, an experimental study on 27 HSSSWR-reinforced ECC plates was conducted considering the effects of the reinforcement ratio of longitudinal HSSSWRs, formula of ECC and width of the plate. Test results revealed that HSSSWR-reinforced ECC exhibit superior post-cracking resistance, deformation capacity and crack-width control capacity. Increasing the reinforcement ratio of longitudinal HSSSWRs can effectively enhance the tensile strength, crack-width control capacity, deformation capacity and tensile toughness of HSSSWR-reinforced ECC. Adding thickener in ECC can significantly improve the crack-width control capacity and deformation capacity of HSSSWR-reinforced ECC due to enhancing uniform distribution of polyvinyl alcohol fibers, but would slightly reduce the cracking stress and maximum tensile stress by bringing small bubbles in the matrix. The tensile properties of HSSSWR-reinforced ECC plates are almost not affected by varying the plate width. Besides, a tensile constitutive model was developed for charactering the stress–strain relationship of HSSSWR-reinforced ECC in tension. Based on mechanical theories and failure characteristics of HSSSWR-reinforced ECC, the model parameters were determined, and calculation equations of cracking stress and tensile strength were proposed. The accuracy of the developed model and calculation equations was verified by test results.


1991 ◽  
Vol 49 (10) ◽  
pp. 1074-1078
Author(s):  
Richard H. Haug ◽  
Jon P. Bradrick ◽  
Marilyn Su

2013 ◽  
Vol 746 ◽  
pp. 394-399
Author(s):  
Niwat Anuwongnukroh ◽  
Yosdhorn Chuankrerkkul ◽  
Surachai Dechkunakorn ◽  
Pornkiat Churnjitapirom ◽  
Theeralaksna Suddhasthira

The archwire is generally used in fixed appliances for orthodontic treatment to correct dental malocclusion. However, it is interesting to know whether general purpose stainless steel wire could replace commercial orthodontic archwire in orthodontic practice for economic reasons. The purpose of this study was to determine the bending properties of general purpose stainless steel wire compared with commercial orthodontic stainless steel wires after forming as an archwire for orthodontic use. The samples used in this study were 90 general purpose and 45 commercial (Highland) round stainless steel wires in 0.016, 0.018, and 0.020 sizes (30 general purpose and 15 commercial wires for each size). All 15 general purpose stainless steel wires with different sizes were formed into orthodontic archwire with a Universal Testing Machine. All samples were tested (three-point bending test) for mechanical properties. The results showed no significant difference between general purpose and commercial orthodontic wires in size 0.016 for 0.1 mm offset bending force, 0.2% yield strength, and springback. Although many mechanical properties of general purpose wires differed from commercial wires, their values conformed to other previous studies within the range of clinical acceptance. In conclusion, orthodontic formed general purpose round stainless steel wires had statistically different (p <0.05) mechanical properties from commercial orthodontic stainless steel wires (Highland) but the mechanical properties were acceptable to use in orthodontic treatment.


Sign in / Sign up

Export Citation Format

Share Document