scholarly journals Effects of hydrogen assisted stress corrosion on damage tolerance of a high-strength duplex stainless steel wire for prestressing concrete

2014 ◽  
Vol 66 ◽  
pp. 38-44 ◽  
Author(s):  
M. de Abreu ◽  
M. Iordachescu ◽  
A. Valiente
2021 ◽  
Vol 2 (3) ◽  
pp. 397-411
Author(s):  
Cem Örnek ◽  
Kemal Davut ◽  
Mustafa Kocabaş ◽  
Aleyna Bayatlı ◽  
Mustafa Ürgen

The corrosion morphology in grade 2205 duplex stainless steel wire was studied to understand the nature of pitting and the causes of the ferrite phase’s selective corrosion in acidic (pH 3) NaCl solutions at 60 °C. It is shown that the corrosion mechanism is always pitting, which either manifests lacy cover perforation or densely arrayed selective cavities developing selectively on the ferrite phase. Pits with a lacy metal cover form in concentrated chloride solutions, whereas the ferrite phase’s selective corrosion develops in diluted electrolytes, showing dependency on the chloride-ion concentration. The pit perforation is probabilistic and occurs on both austenite and ferrite grains. The lacy metal covers collapse in concentrated solutions but remain intact in diluted electrolytes. The collapse of the lacy metal cover happens due to hydrogen embrittlement. Pit evolution is deterministic and occurs selectively in the ferrite phase in light chloride solutions.


Author(s):  
Xinling Wang ◽  
Guanghua Yang ◽  
Wenwen Qian ◽  
Ke Li ◽  
Juntao Zhu

AbstractEngineered cementitious composites (ECC) show the distinguished characteristics of high post-cracking resistance and ductility. High-strength stainless steel wire rope (HSSSWR) has been successfully used for restoring or strengthening of existing structures. By combining the advantages of these two materials, a new composite system formed by embedding HSSSWR into ECC was proposed and expected to be a promising engineering material for repair or strengthening of structures. To investigate the tensile failure mechanism and mechanical properties of HSSSWR-reinforced ECC, an experimental study on 27 HSSSWR-reinforced ECC plates was conducted considering the effects of the reinforcement ratio of longitudinal HSSSWRs, formula of ECC and width of the plate. Test results revealed that HSSSWR-reinforced ECC exhibit superior post-cracking resistance, deformation capacity and crack-width control capacity. Increasing the reinforcement ratio of longitudinal HSSSWRs can effectively enhance the tensile strength, crack-width control capacity, deformation capacity and tensile toughness of HSSSWR-reinforced ECC. Adding thickener in ECC can significantly improve the crack-width control capacity and deformation capacity of HSSSWR-reinforced ECC due to enhancing uniform distribution of polyvinyl alcohol fibers, but would slightly reduce the cracking stress and maximum tensile stress by bringing small bubbles in the matrix. The tensile properties of HSSSWR-reinforced ECC plates are almost not affected by varying the plate width. Besides, a tensile constitutive model was developed for charactering the stress–strain relationship of HSSSWR-reinforced ECC in tension. Based on mechanical theories and failure characteristics of HSSSWR-reinforced ECC, the model parameters were determined, and calculation equations of cracking stress and tensile strength were proposed. The accuracy of the developed model and calculation equations was verified by test results.


1975 ◽  
Vol 61 (7) ◽  
pp. 1054-1062
Author(s):  
Yoshinori KAWABATA ◽  
Haruo NISHIZAWA ◽  
Tsuyoshi NISHIMURA ◽  
Kazuhiko IKOMA ◽  
Mitsuharu MATSUBARA

Author(s):  
Cem Örnek ◽  
Kemal Davut ◽  
Mustafa Kocabaş ◽  
Aleyna Bayatlı ◽  
Mustafa Ürgen

The corrosion morphology in grade 2205 duplex stainless steel wire has been studied to understand the nature of pitting and the causes of the ferrite phase's selective corrosion in acidic NaCl solution. It is shown that the corrosion mechanism is always pitting, which either manifests lacy cover perforation or densely-arrayed selective cavities developing on the ferrite phase. Pits with a lacy metal cover form in concentrated chloride solutions, whereas the ferrite phase's selective corrosion develops in diluted electrolytes, showing dependency on the chloride-ion concentration. The pit perforation is probabilistic and occurs on both austenite and ferrite grains. The lacy metal covers collapse in concentrated solutions but remain intact in diluted electrolytes. The collapse of the lacy metal cover happens due to hydrogen embrittlement. Pit evolution is deterministic and occurs selectively in the ferrite phase in light chloride solutions.


Sign in / Sign up

Export Citation Format

Share Document