scholarly journals INCREASING THE EFFICIENCY OF MARINE ENERGY CONVERSION

2021 ◽  
Vol 2021 (2) ◽  
pp. 7-10
Author(s):  
VIOLETA-VALI CIUCUR

New approaches need to be taken into account in adopting the configuration of residual heat recovery systems, design, operation and control and to consider equipment and the energy conversion process in the perspective of integrated systems in order to increase measurable energy efficiency in existing marine energy systems as well as other new systems.

Author(s):  
Russell V. Hoffman

This paper discusses the commercial and industrial applications of the AiResearch Model 831 Turbopower Module. The 500-hp turbine is described with particular emphasis upon the functional and control characteristics that have gained for it an enviable place in the energy-conversion field. Accessory equipment such as exhaust heat exchangers, absorption chillers, and turbopowered compressors are described in sufficient detail to enable the reader to understand their operation. Three typical commercial and industrial applications are described with particular emphasis on illustrating the economic feasibility of these on-site turbopowered energy systems. The results of the successful application of turbo-powered energy systems are tabulated.


Author(s):  
Robert J. K. Wood ◽  
AbuBakr S. Bahaj ◽  
Stephen R. Turnock ◽  
Ling Wang ◽  
Martin Evans

Against the backdrop of increasing energy demands, the threat of climate change and dwindling fuel reserves, finding reliable, diverse, sustainable/renewable, affordable energy resources has become a priority for many countries. Marine energy conversion systems are at the forefront of providing such a resource. Most marine renewable energy conversion systems require tribological components to convert wind or tidal streams to rotational motion for generating electricity while wave machines typically use oscillating hinge or piston within cylinder geometries to promote reciprocating linear motion. This paper looks at the tribology of three green marine energy systems, offshore wind, tidal and wave machines. Areas covered include lubrication and contamination, bearing and gearbox issues, biofouling, cavitation erosion, tribocorrosion, condition monitoring as well as design trends and loading conditions associated with tribological components. Current research thrusts are highlighted along with areas needing research as well as addressing present-day issues related to the tribology of offshore energy conversion technologies.


2019 ◽  
Vol 3 (5) ◽  
pp. 573-578 ◽  
Author(s):  
Kwanwoo Shin

Living cells naturally maintain a variety of metabolic reactions via energy conversion mechanisms that are coupled to proton transfer across cell membranes, thereby producing energy-rich compounds. Until now, researchers have been unable to maintain continuous biochemical reactions in artificially engineered cells, mainly due to the lack of mechanisms that generate energy-rich resources, such as adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). If these metabolic activities in artificial cells are to be sustained, reliable energy transduction strategies must be realized. In this perspective, this article discusses the development of an artificially engineered cell containing a sustainable energy conversion process.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4618
Author(s):  
Antonio Mariani ◽  
Gaetano Crispino ◽  
Pasquale Contestabile ◽  
Furio Cascetta ◽  
Corrado Gisonni ◽  
...  

Overtopping-type wave power conversion devices represent one of the most promising technology to combine reliability and competitively priced electricity supplies from waves. While satisfactory hydraulic and structural performance have been achieved, the selection of the hydraulic turbines and their regulation is a complex process due to the very low head and a variable flow rate in the overtopping breakwater set-ups. Based on the experience acquired on the first Overtopping BReakwater for Energy Conversion (OBREC) prototype, operating since 2016, an activity has been carried out to select the most appropriate turbine dimension and control strategy for such applications. An example of this multivariable approach is provided and illustrated through a case study in the San Antonio Port, along the central coast of Chile. In this site the deployment of a breakwater equipped with OBREC modules is specifically investigated. Axial-flow turbines of different runner diameter are compared, proposing the optimal ramp height and turbine control strategy for maximizing system energy production. The energy production ranges from 20.5 MWh/y for the smallest runner diameter to a maximum of 34.8 MWh/y for the largest runner diameter.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2416
Author(s):  
Marina Dorokhova ◽  
Fernando Ribeiro ◽  
António Barbosa ◽  
João Viana ◽  
Filipe Soares ◽  
...  

The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.


2015 ◽  
Vol 747 ◽  
pp. 329-332
Author(s):  
Elham Maghsoudi Nia ◽  
Titi Hajihasani ◽  
Mohd Yazid Mohd Yunos ◽  
Nordin Abdul Rahman

Daylighting strategies and control of it, plays a significant role in energy efficiency and provision of visual comforts in buildings. This study conducted a review of literature and observation in a hot and dry region of Iran in order to investigate daylighting strategies and control of it by shading devices in the vernacular residential buildings. The results show thatdaylight in vernacular rooms was provided through door, window, Rozan, Moshabak, and Goljam. These components were equipped with thevertical and horizontalshading devices such as Orsi, Sarsayeh, Tabeshband and Kharakpoushto control the sunlight. The vernacular lighting strategy was in response to the energy efficiency and provided visual comfort.The vernacular concepts and schemes still can be adopted and reused by architects and developers. The study recommends appropriate daylight schemes and shading devices in design phase to achieve energy efficiency in new residential buildings.


Sign in / Sign up

Export Citation Format

Share Document