SUAV WARFARE IN THE NEXT DECADE

2021 ◽  
Vol 17 (1) ◽  
pp. 103-110
Author(s):  
Rodríguez YAGO

Abstract: In this document we have focused on researching the so-called "Small Unmanned Aerial Vehicles" in order to find out what their main characteristics are and how they may affect the way we fight in the future. To achieve our goal, we have established several subjects relevant to any fighting system: design, manufacturing, tactical capabilities, logistics, recent experiences. After analyzing them we have come to a series of conclusions.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1385
Author(s):  
Yurong Feng ◽  
Kwaiwa Tse ◽  
Shengyang Chen ◽  
Chih-Yung Wen ◽  
Boyang Li

The inspection of electrical and mechanical (E&M) devices using unmanned aerial vehicles (UAVs) has become an increasingly popular choice in the last decade due to their flexibility and mobility. UAVs have the potential to reduce human involvement in visual inspection tasks, which could increase efficiency and reduce risks. This paper presents a UAV system for autonomously performing E&M device inspection. The proposed system relies on learning-based detection for perception, multi-sensor fusion for localization, and path planning for fully autonomous inspection. The perception method utilizes semantic and spatial information generated by a 2-D object detector. The information is then fused with depth measurements for object state estimation. No prior knowledge about the location and category of the target device is needed. The system design is validated by flight experiments using a quadrotor platform. The result shows that the proposed UAV system enables the inspection mission autonomously and ensures a stable and collision-free flight.


Author(s):  
Aleksandar Erceg ◽  
Zafer Kilic

Unmanned aerial vehicles (UAVs) are present in our lives, and although they are mostly connected to military purposes, they are becoming more present in the commercial and civilian sector. Possible applications of UAVs in the commercial and civilian sector will open new possibilities for further research and development of UAVs. This movement can bring new investment and new jobs, but at the same time, it will influence the way some activities are being done now. The use of UAVs brings savings in the production cycles and improve current operations in various industrial sectors. The chapter gives a definition and explains different types and potential applications of unmanned aerial vehicles in the word as well as the potential economic impact of their development and use. In the second part, the chapter analyzes the application of drones in Turkey and Croatia. Although different in terms of their size and the number of inhabitants, both countries are at the same level in relation to UAV application. Applications in both countries are compared, and after that, a conclusion is drawn.


2019 ◽  
Vol 11 (10) ◽  
pp. 1180 ◽  
Author(s):  
Todd M. Buters ◽  
Philip W. Bateman ◽  
Todd Robinson ◽  
David Belton ◽  
Kingsley W. Dixon ◽  
...  

The last decade has seen an exponential increase in the application of unmanned aerial vehicles (UAVs) to ecological monitoring research, though with little standardisation or comparability in methodological approaches and research aims. We reviewed the international peer-reviewed literature in order to explore the potential limitations on the feasibility of UAV-use in the monitoring of ecological restoration, and examined how they might be mitigated to maximise the quality, reliability and comparability of UAV-generated data. We found little evidence of translational research applying UAV-based approaches to ecological restoration, with less than 7% of 2133 published UAV monitoring studies centred around ecological restoration. Of the 48 studies, > 65% had been published in the three years preceding this study. Where studies utilised UAVs for rehabilitation or restoration applications, there was a strong propensity for single-sensor monitoring using commercially available RPAs fitted with the modest-resolution RGB sensors available. There was a strong positive correlation between the use of complex and expensive sensors (e.g., LiDAR, thermal cameras, hyperspectral sensors) and the complexity of chosen image classification techniques (e.g., machine learning), suggesting that cost remains a primary constraint to the wide application of multiple or complex sensors in UAV-based research. We propose that if UAV-acquired data are to represent the future of ecological monitoring, research requires a) consistency in the proven application of different platforms and sensors to the monitoring of target landforms, organisms and ecosystems, underpinned by clearly articulated monitoring goals and outcomes; b) optimization of data analysis techniques and the manner in which data are reported, undertaken in cross-disciplinary partnership with fields such as bioinformatics and machine learning; and c) the development of sound, reasonable and multi-laterally homogenous regulatory and policy framework supporting the application of UAVs to the large-scale and potentially trans-disciplinary ecological applications of the future.


Computers ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 7 ◽  
Author(s):  
Dennis Kaiser ◽  
Veronika Lesch ◽  
Julian Rothe ◽  
Michael Strohmeier ◽  
Florian Spieß ◽  
...  

In the present day, unmanned aerial vehicles become seemingly more popular every year, but, without regulation of the increasing number of these vehicles, the air space could become chaotic and uncontrollable. In this work, a framework is proposed to combine self-aware computing with multirotor formations to address this problem. The self-awareness is envisioned to improve the dynamic behavior of multirotors. The formation scheme that is implemented is called platooning, which arranges vehicles in a string behind the lead vehicle and is proposed to bring order into chaotic air space. Since multirotors define a general category of unmanned aerial vehicles, the focus of this thesis are quadcopters, platforms with four rotors. A modification for the LRA-M self-awareness loop is proposed and named Platooning Awareness. The implemented framework is able to offer two flight modes that enable waypoint following and the self-awareness module to find a path through scenarios, where obstacles are present on the way, onto a goal position. The evaluation of this work shows that the proposed framework is able to use self-awareness to learn about its environment, avoid obstacles, and can successfully move a platoon of drones through multiple scenarios.


2016 ◽  
Vol 14 (1) ◽  
pp. 20-33 ◽  
Author(s):  
Ole B. Jensen

This paper uses the metaphor of ‘boomerangs’ articulated by Michel Foucault to discuss the potential for drones to become the ‘next layer’ of urban surveillance in our cities. Like earlier Western technologies and techniques of government that were ‘tested out’ in foreign warzones and then ‘brought back’ to urban centres (the helicopter and its utilization in Vietnam and its return to urban police forces is a clear illustration hereof), contemporary unmanned aerial vehicles hold the potential to act as proverbial ‘Foucauldian boomerangs’ and return from warzones in Afghanistan, Iraq, and Pakistan to Western cities. The paper explores how a nexus of Surveillance Studies and mobilities research may be a fruitful way into comprehending this new phenomenon. En route the practical applications of drones as well as the historical importance of aerial power are connected to a situational understanding of mobilities. The paper points at a number of challenges for the future and should be understood as a first tentative attempt to set this on the research agenda.


Author(s):  
A. Achachi ◽  
D. Benatia

The ability for an aircraft to fly during a much extended period of time has become a key issue and a target of research, both in the domain of civilian aviation and unmanned aerial vehicles. This paper describes a new design and evaluating of solar wind aircraft with the objective to assess the impact of a new system design on overall flight crew performance. The required endurance is in the range of some hours in the case of law enforcement, border surveillance, forest fire fighting or power line inspection. However, other applications at high altitudes, such as geomatic operations for delivering geographic information, weather research and forecast, environmental monitoring, would require remaining airborne during days, weeks or even months. The design of GNSS non precision approach procedure for different airports is based on geomatic data.


2020 ◽  
Vol 14 (1) ◽  
pp. 51-56
Author(s):  
Jorge Daniel Gallo Sanabria ◽  
Paula Andrea Mozuca Tamayo ◽  
Rafael Iván Rincón Fonseca

The trajectory following performed by unmanned aerial vehicles has several advantages that can be taken to several applications, going from package delivery to agriculture. However, this involves several challenges depending on the way the following is performed, particularly in the case of trajectory following by using computer vision. In here we will show the design, the simulation and the implementation of a simple algorithm for trajectory following by using computer vision, this algorithm will be executed on a drone that will arrive into a wished point.


Author(s):  
Aleksandar Erceg ◽  
Zafer Kilic

Unmanned aerial vehicles (UAVs) are present in our lives, and although they are mostly connected to military purposes, they are becoming more present in the commercial and civilian sector. Possible applications of UAVs in the commercial and civilian sector will open new possibilities for further research and development of UAVs. This movement can bring new investment and new jobs, but at the same time, it will influence the way some activities are being done now. The use of UAVs brings savings in the production cycles and improve current operations in various industrial sectors. The chapter gives a definition and explains different types and potential applications of unmanned aerial vehicles in the word as well as the potential economic impact of their development and use. In the second part, the chapter analyzes the application of drones in Turkey and Croatia. Although different in terms of their size and the number of inhabitants, both countries are at the same level in relation to UAV application. Applications in both countries are compared, and after that, a conclusion is drawn.


Sign in / Sign up

Export Citation Format

Share Document