scholarly journals Effects of 8 Weeks Resistance Training on Nitric Oxide (NO) Concentration and Mean Arterial Pressure (MAP) in Young Men

2009 ◽  
Vol 19 (5) ◽  
pp. 625-632
Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Lorena M Amaral ◽  
Ana Carolina T Palei ◽  
Lucas C Pinheiro ◽  
Jonas T Sertorio ◽  
Danielle A Guimaraes ◽  
...  

The pathophysiology of preeclampsia (PE) is not entirely known. However, increased oxidative stress possibly leading to impaired nitric oxide activity has been implicated in the critical condition. Increased oxidative stress with increased levels of highly reactive species including superoxide may generate peroxynitrite. We examined the role of inducible nitric oxide synthase (iNOS) and oxidative stress in the reduced uterine perfusion pressure (RUPP) preeclampsia experimental model. METHODS: RUPP was induced in wistar rats. Pregnant rats in the RUPP group had their aortic artery clipped at day 14 of gestation. After a midline incision, a silver clip (0.203 mm) was placed around the aorta above the iliac bifurcation; silver clips (0.100 mm) were also placed on branches of both the right and left ovarian arteries that supply the uterus. Sham-operated (pregnant control rats) and RUPP rats were treated with oral vehicle or 1 mg/kg/day 1400W (iNOS inhibitor) for 5 days. Mean arterial pressure (MAP) and plasma levels of thiobarbituric acid-reactive species (TBARS) and total radical-trapping antioxidant potential (TRAP) were measured determined. Aortic iNOS expression (Western blotting) and reactive oxygen species (ROS; assessed by fluorescence microscopy with dihydroethidium-DHE) were measured. We found increased mean arterial pressure in RUPP compared with pregnant control rats (MAP= 128±1 vs. 100±1.8 mmHg, respectively; P<0.05) and 1400W exerted antihypertensive effects (MAP= 114±2 vs.128±1 mmHg in RUPP treated and untreated rats, respectively; P<0.05). Higher reactive oxygen species (ROS) concentrations were found in RUPP compared with pregnant control rats (7.1±0.5 vs. 5.1±0.5 arbitrary units (A.U.), respectively; P<0.05) and 1400W decreased ROS production to 5.8±0.02 A.U. in RUPP treated rats, P<0.05. In addition, 1400W attenuated iNOS expression in RUPP rats (0.29±0.02 vs. 0.55±0.8 A.U. in RUPP treated and untreated rats, respectively; P<0.01) and had no effects on plasma TBARS and TRAP levels. Our results suggest that 1400w exerts antihypertensive effects in the RUPP model and suppresses ROS formation. Supported by FAPESP,Cnpq.


1999 ◽  
Vol 277 (1) ◽  
pp. F58-F65 ◽  
Author(s):  
David H. Warden ◽  
Anthony J. Croatt ◽  
Zvonimir S. Katusic ◽  
Karl A. Nath

In the glycerol model of renal injury we describe an acute rise in systemic arterial pressure which is attended by a reduced vasodilatory response to acetylcholine in vivo; vasodilatory responses to verapamil, however, were not impaired. Neither arginine nor sodium nitroprusside diminished this rise in blood pressure; N ω-nitro-l-arginine methyl ester (l-NAME) elevated basal mean arterial pressure and markedly blunted the rise in mean arterial pressure following the administration of glycerol. Aortic rings from the glycerol-treated rat demonstrate an impaired vasodilatory response to acetylcholine, an effect not repaired by arginine; the vasodilatory responses to nitric oxide donors, sodium nitroprusside and SIN-1, were also impaired; 8-bromo-cGMP, at higher doses, evinced a vasodilatory response comparable to that observed in the control rings. This pattern of responses was not a nonspecific effect of aortic injury, since aortic rings treated with mercuric chloride, a potent oxidant, displayed an impaired vasodilatory response to acetylcholine but not to sodium nitroprusside. We conclude that in the glycerol model of heme protein-induced tissue injury, there is an acute elevation in mean arterial pressure attended by impaired endothelium-dependent vasodilatation in vitro and in vivo. We suggest that the acute scavenging of nitric oxide by heme proteins depletes the blood vessel wall of its endogenous vasodilator and permeation of heme proteins into the blood vessel wall may contribute to such sustained effects as observed in vitro.


1995 ◽  
Vol 268 (1) ◽  
pp. R171-R182 ◽  
Author(s):  
M. A. Koch ◽  
E. M. Hasser ◽  
J. C. Schadt

We investigated the role of nitric oxide, an endothelium-derived relaxing factor, in the hemodynamic response to acute hemorrhage in conscious rabbits. Chronically instrumented rabbits were treated with the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) or vehicle and hemorrhaged until mean arterial pressure fell below 40 mmHg. Control animals were treated with L-NAME or vehicle but not subjected to hemorrhage. L-NAME increased mean arterial pressure and decreased heart rate in control animals. Hindquarters and mesenteric blood flow velocity and conductance were reduced by L-NAME. Nitric oxide synthase inhibition also produced significant changes in the hemodynamic response to hypotensive hemorrhage. Mean arterial pressure was higher and regional vascular conductances were lower throughout hemorrhage and during recovery. L-NAME treatment significantly (but in some cases, subtly) altered the characteristic pattern of changes in vascular conductance associated with acute hypotensive hemorrhage and recovery. Similar experiments with other arginine analogues or phenylephrine infusion showed that L-NAME's effects during hemorrhage were due to nitric oxide synthase inhibition. We conclude that nitric oxide plays a role in the hemodynamic response to acute hemorrhage in the rabbit and is essential for the full expression of the vasodilation associated with hypotensive hemorrhage.


1998 ◽  
Vol 274 (1) ◽  
pp. R175-R180 ◽  
Author(s):  
James D. Krier ◽  
Juan Carlos Romero

Nitric oxide (NO) synthesis inhibition with N G-nitro-l-arginine methyl ester (l-NAME) (10 μg ⋅ kg−1 ⋅ min−1iv), cyclooxygenase inhibition with meclofenamate (Meclo; 5 mg/kg iv bolus), and combination of drugs (l-NAME+Meclo) were used to investigate the roles of NO and prostaglandins (PG) in the hemodynamic and natriuretic responses to isotonic saline volume expansion (VE; 5% body wt over 60 min) in anesthetized dogs. Before VE,l-NAME ( n = 6), Meclo ( n = 6), andl-NAME+Meclo ( n = 6) produced significant increments in mean arterial pressure (MAP) of 12 ± 2, 15 ± 3, and 17 ± 3 mmHg, respectively. VE did not change MAP in Meclo-treated dogs, but produced a significant elevation in the control dogs (14 ± 6 mmHg), inl-NAME-treated dogs (17 ± 6 mmHg), and in dogs pretreated withl-NAME+Meclo (12 ± 5 mmHg). VE alone induced marked natriuretic responses in the control (38 ± 9 to 562 ± 86 μmol/min),l-NAME (31 ± 9 to 664 ± 65 μmol/min), and Meclo groups (41 ± 10 to 699 ± 51 μmol/min). However, this natriuretic response was attenuated in dogs pretreated with l-NAME+Meclo (12 ± 4 to 185 ± 52 μmol/min). These results indicate that 1) blockade of both NO and PGs has significant diminishing effects on volume-induced natriuresis, 2) NO blockade alone impairs volume-induced natriuresis in a manner that requires further increases in MAP to restore the natriuresis, and 3) PG blockade alone does not curtail volume-induced natriuresis.


2013 ◽  
Vol 304 (5) ◽  
pp. H667-H673 ◽  
Author(s):  
Naoto Fujii ◽  
Maggie C. Reinke ◽  
Vienna E. Brunt ◽  
Christopher T. Minson

Cigarette smoking attenuates acetylcholine (ACh)-induced cutaneous vasodilation in humans, but the underlying mechanisms are unknown. We tested the hypothesis that smokers have impaired nitric oxide (NO)- and cyclooxygenase (COX)-dependent cutaneous vasodilation to ACh infusion. Twelve young smokers, who have smoked more than 5.2 ± 0.7 yr with an average daily consumption of 11.4 ± 1.2 cigarettes, and 12 nonsmokers were tested. Age, body mass index, and resting mean arterial pressure were similar between the groups. Cutaneous vascular conductance (CVC) was evaluated as laser-Doppler flux divided by mean arterial pressure, normalized to maximal CVC (local heating to 43.0°C plus sodium nitroprusside administration). We evaluated the increase in CVC from baseline to peak (CVCΔpeak) and area under the curve of CVC (CVCAUC) during a bolus infusion (1 min) of 137.5 μM ACh at four intradermal microdialysis sites: 1) Ringer (control), 2) 10 mM NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor), 3) 10 mM ketorolac (COX inhibitor), and 4) combination of l-NAME + ketorolac. CVCΔpeakand CVCAUCat the Ringer site in nonsmokers were greater than in smokers (CVCΔpeak, 42.9 ± 5.1 vs. 22.3 ± 3.5%max, P < 0.05; and CVCAUC, 8,085 ± 1,055 vs. 3,145 ± 539%max·s, P < 0.05). In nonsmokers, CVCΔpeakand CVCAUCat the l-NAME site were lower than the Ringer site (CVCΔpeak, 29.5 ± 6.2%max, P < 0.05; and CVCAUC, 5,377 ± 1,109%max·s, P < 0.05), but in smokers, there were no differences between the Ringer and l-NAME sites (CVCΔpeak, 16.8 ± 4.3%max, P = 0.11; and CVCAUC, 2,679 ± 785%max·s, P = 0.30). CVCΔpeakand CVCAUCwere reduced with ketorolac in nonsmokers (CVCΔpeak, 13.3 ± 3.6%max, P < 0.05; and CVCAUC, 1,967 ± 527%max·s, P < 0.05) and smokers (CVCΔpeak, 7.8 ± 1.8%max, P < 0.05; and CVCAUC, 1,246 ± 305%max·s, P < 0.05) and at the combination site in nonsmokers (CVCΔpeak, 15.9 ± 3.1%max, P < 0.05; and CVCAUC, 2,660 ± 512%max·s, P < 0.05) and smokers (CVCΔpeak, 11.5 ± 2.6%max, P < 0.05; and CVCAUC, 1,693 ± 409%max·s, P < 0.05), but the magnitudes were greater in nonsmokers ( P < 0.05). These results suggest that impaired ACh-induced skin vasodilation in young smokers is related to diminished NO- and COX-dependent vasodilation.


2001 ◽  
Vol 281 (2) ◽  
pp. R476-R483 ◽  
Author(s):  
T. M. Mills ◽  
D. M. Pollock ◽  
R. W. Lewis ◽  
H. S. Branam ◽  
C. J. Wingard

Recent evidence indicates that endothelin-1 (ET-1) might be a principal vasoconstrictor in the penis. We report that ET-1 injection into the cavernous sinuses before erection sharply reduced the magnitude of subsequent erections. Corpus cavernosum pressure-to-mean arterial pressure ratios (CCP/MAP), with maximal ganglionic stimulation, were 0.62 ± 0.05 before ET-1 injection and 0.31 ± 0.05 after, indicating that ET-1 acted as a vasoconstrictor. When ET-1 was injected during a maximal neurally induced erection, the ability of ET-1 to attenuate subsequent erections was diminished (CCP/MAP 0.75 ± 0.02 before ET-1, 0.61 ± 0.03 after). At submaximal stimulation voltages, injection of ET-1 during erection also attenuated its vasoconstrictive effect. Similarly, when ET-1 was injected during erection induced by intracavernosal injection of the nitric oxide (NO) donor NOR-1, subsequent erections were not significantly suppressed (CCP/MAP 0.53 ± 0.04 before ET-1, 0.45 ± 0.04 after). These findings that ET-1-induced vasoconstriction is attenuated during erection are consistent with the hypothesis that NO mediates erection both by initiating pathways that cause smooth muscle relaxation and by inhibiting the vasoconstrictive actions of ET-1.


2004 ◽  
Vol 100 (6) ◽  
pp. 1484-1490 ◽  
Author(s):  
Ernst von Dobschuetz ◽  
Joerg Hutter ◽  
Tomas Hoffmann ◽  
Konrad Messmer

Background Scavenging of nitric oxide by hemoglobin-based oxygen carriers could aggravate microcirculatory failure in splanchnic organs after hemorrhagic shock as a consequence of vasoconstrictive side effects. The aim of this study was to compare the effects of two recombinant human hemoglobin solutions, a second-generation product bearing reduced nitric oxide-scavenging properties (rHb2.0) due to site directed mutagenesis of the heme pocket and a first-generation recombinant hemoglobin (rHb1.1) with scavenging capacity similar to native hemoglobin, on the pancreatic microcirculation after hemorrhagic shock. Methods Twenty-eight pentobarbital-anesthetized rats were bled to a mean arterial pressure of 40 mmHg and maintained at this level for 1 h. Using an intravital microscope, the length of erythrocyte-perfused pancreatic capillaries per observation area (functional capillary density) were measured in animals resuscitated by volumes of hydroxyethyl starch, rHb1.1, or rHb2.0 equivalent to the shed blood volume. Animals without shock induction served as control. Results As compared with control (438 +/- 10 cm(-1)), animals treated with hydroxyethyl starch (315 +/- 44 cm(-1)) and rHb1.1 (288 +/- 67 cm(-1)) showed a significant reduction of functional capillary density after 2 h of resuscitation. rHb2.0 was able to restore functional capillary density (410 +/- 42 cm(-1)) and mean arterial pressure to baseline values. Conclusion rHb2.0 was effectively able to restore pancreatic microcirculation after hemorrhagic shock. This may be related to the compound's effective lack of nitric oxide-scavenging properties. This hemoglobin solution or ones similar to it might be uniquely valuable for resuscitation from hemorrhagic shock.


1992 ◽  
Vol 176 (4) ◽  
pp. 1175-1182 ◽  
Author(s):  
J P Cobb ◽  
C Natanson ◽  
W D Hoffman ◽  
R F Lodato ◽  
S Banks ◽  
...  

Inhibitors of nitric oxide synthase (NOS) have been reported to increase mean arterial pressure in animal models of sepsis and recently have been given to patients in septic shock. However, controlled studies to determine the effects of these agents on cardiovascular function and survival in awake animal models of sepsis have not been reported. To examine the therapeutic potential of NOS inhibition in septic shock, we challenged canines with endotoxin (2 or 4 mg/kg i.v.) and treated them with either normal saline or N omega-amino-L-arginine (10 or 1 mg/kg/h), the most specific inhibitor available for the isoform of NOS implicated in septic shock. Endotoxemic animals treated with N omega-amino-L-arginine (n = 11) had higher systemic and pulmonary vascular resistance indices (SVRI and PVRI, p less than or equal to 0.033) and decreased heart rates (p = 0.009), cardiac indices (CI, p = 0.01), oxygen delivery indices (p = 0.027), and oxygen consumption indices (p = 0.046) compared with controls (n = 6). Moreover, N omega-amino-L-arginine increased mortality rates after endotoxin challenge (10 of 11 vs. 1 of 6 controls, p = 0.005). Administration of L-arginine did not improve survival or alter the cardiopulmonary effects of N omega-amino-L-arginine, which suggests that inhibition of NOS may not have been competitive. In normal animals, N omega-amino-L-arginine alone (n = 3) increased SVRI (p = 0.0008) and mean arterial pressure (p = 0.016), and decreased CI (p = 0.01) compared with saline-treated controls (n = 3), but, at the high dose, also produced neuromuscular rigidity and seizure-like activity that was not apparent in the endotoxemic model. Thus, the mortality rate from endotoxemia increased either because of NOS inhibition per se or because of properties unique to N omega-amino-L-arginine, or both.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Andrew Stiegler ◽  
Jian-Hua Li ◽  
Vivek Shah ◽  
Tea Tsaava ◽  
Aisling Tynan ◽  
...  

AbstractAcetylcholine (ACh) decreases blood pressure by stimulating endothelium nitric oxide-dependent vasodilation in resistance arterioles. Normal plasma contains choline acetyltransferase (ChAT) and its biosynthetic product ACh at appreciable concentrations to potentially act upon the endothelium to affect blood pressure. Recently we discovered a T-cell subset expressing ChAT (TChAT), whereby genetic ablation of ChAT in these cells produces hypertension, indicating that production of ACh by TChAT regulates blood pressure. Accordingly, we reasoned that increasing systemic ChAT concentrations might induce vasodilation and reduce blood pressure. To evaluate this possibility, recombinant ChAT was administered intraperitoneally to mice having angiotensin II-induced hypertension. This intervention significantly and dose-dependently decreased mean arterial pressure. ChAT-mediated attenuation of blood pressure was reversed by administration of the nitric oxide synthesis blocker l-nitro arginine methyl ester, indicating ChAT administration decreases blood pressure by stimulating nitic oxide dependent vasodilation, consistent with an effect of ACh on the endothelium. To prolong the half life of circulating ChAT, the molecule was modified by covalently attaching repeating units of polyethylene glycol (PEG), resulting in enzymatically active PEG-ChAT. Administration of PEG-ChAT to hypertensive mice decreased mean arterial pressure with a longer response duration when compared to ChAT. Together these findings suggest further studies are warranted on the role of ChAT in hypertension.


Sign in / Sign up

Export Citation Format

Share Document