scholarly journals Seroprevalence of foot-and-mouth disease in large ruminants in periurban dairy farms near Islamabad, Pakistan

2016 ◽  
Vol 10 (2) ◽  
Author(s):  
Umer Farooq ◽  
Aman Ullah ◽  
Hamid Irshad ◽  
Asma Latif ◽  
Khalid Naeem ◽  
...  

AbstractBackgroundFoot-and-mouth disease (FMD) is an enzootic viral disease affecting livestock in Pakistan.ObjectivesTo determine the seroprevalence of FMD in large ruminants in periurban dairy farms near Islamabad.MethodsSerum samples were collected from 636 large ruminants during 2011 to 2012; 584 (92%) were buffaloes (Bos bubalis bubalis) and 52 (18%) were cattle (Bos taurus indicus). The population sampled was mainly adult (n = 514) and female (n = 596). Sera were assayed for antibodies against a nonstructural protein of the FMD virus using a Chekit FMD-3ABC bo-ov enzyme immunoassay Kit (Idexx Laboratories). Data were analyzed using a χResultsThe seroprevalence of FMD in the ruminants was 46% (n = 293, 95% confidence interval (CI); 42.18- 49.95) and was significantly higher in buffaloes (285, 97%; χConclusionsLarge ruminants in periurban dairy farms near Islamabad have a high FMD virus seroprevalence and play a potential role in the persistence and transmission of FMD in Pakistan.

Author(s):  
M. Rout ◽  
S. Subramaniam ◽  
J. K. Mohapatra ◽  
B. B. Dash ◽  
B. Pattnaik

The present paper describes the investigation of foot-and-mouth disease (FMD) outbreak in a private pig farm at Kotty in Kollam district of Kerala during October 2013. During the clinical phase, severe vesicular lesions on snout and skin around the coronary bands were observed in pigs. A total of 48 serum samples and 12 clinical samples (ruptured snout epithelia) were collected. All serum samples were subjected to indirect 3AB nonstructural protein (NSP) ELISA and liquid phase blocking (LPB) ELISA. In 3AB NSP ELISA, all serum samples were found positive for NSP antibodies indicating infection. In LPB ELISA, 42 of 48 (87.5%) pigs were found to have protective log10 antibody titre of ³1.8 against FMD virus serotypes O, A and Asia 1. All the clinical materials were found positive for serotype O in antigen detection ELISA as well as in multiplex reverse transcription-polymerase chain reaction (mRT-PCR). In VP1 region-based phylogenetic analysis, the serotype O isolates causing the outbreak were found to conglomerate within Ind2001 lineage. Pigs infected with FMD may pose rigorous threat to other susceptible domestic livestock as they exhale enormous quantity of virus. As a consequence, they should be included under prophylactic vaccination and surveillance programmes ongoing in the country.


2011 ◽  
Vol 57 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Shuang Li ◽  
Mingchun Gao ◽  
Runxiang Zhang ◽  
Ge Song ◽  
Jun Song ◽  
...  

Foot-and-mouth disease is a highly contagious viral disease of cloven-hoofed animals. The availability of a vaccine for differentiating infected from vaccinated animals (DIVA) is crucial for the control and eradication of Foot-and-mouth disease virus (FMDV). Because traditional inactivated vaccines may contain trace nonstructural proteins interfering with the DIVA, we hypothesized that mutant FMDV with deletion of immunodominant epitopes may be valuable. Our previous study has generated a full-length cDNA clone (pBSAs) of FMDV serotype Asia 1 isolated in China. In this study, a B-cell epitope was identified in the 3A region of a nonstructural protein (NSP) by anti-FMDV cattle sera. Furthermore, we generated recombinant FMDV (rvAs-3A14D) by selectively deleting 14 amino acids (position 91–104) in the 3A region of the NSP. Following in vitro transcription and transfection in BHK-21 cells, we successfully rescued the rvAs-3A14D from BHK-21 cells. Characterization of the rvAs-3A14D revealed that the infectivity, antigenicity, and replication kinetics in BHK-21 cells and virulence in mice of the rvAs-3A14D were similar to that of its parent virus. Notably, the mutant rvAs-3A14D only replicated well in BHK-21 but did poorly in primary calf kidney cells. These data suggest that the recombinant FMDV with deletion of this epitope in the NSP may be potentially used as a candidate inactivated vaccine. Therefore, the application of the marker vaccine and differential diagnostic tests may open a promising new avenue for the development of a vaccine for DIVA.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Ryan A. Waters ◽  
Jemma Wadsworth ◽  
Valerie Mioulet ◽  
Andrew E. Shaw ◽  
Nick J. Knowles ◽  
...  

Abstract Background Foot-and-mouth disease (FMD) is a highly infectious viral disease, recognised to affect animals in the order Artiodactyla. The disease is rarely fatal in adult animals, however high mortality is associated with neonatal and juvenile infection. Case presentation Five puppies died after being fed lamb carcases, the lambs having died during an outbreak of FMD in Iran. Following a post-mortem examination, cardiac tissue from one of the dead puppies was subjected to virus isolation, antigen ELISA, real-time RT-PCR, sequencing and confocal microscopy to assess the presence and characteristics of any FMD virus. The virological and microscopic examination of the cardiac tissue provided evidence of FMD virus replication in the canine heart. Conclusions The data generated in this study demonstrate for the first time that FMD virus can internalise and replicate in dogs and may represent an epidemiologically significant event in FMD transmission, highlighting the dangers of feeding diseased animal carcases to other species. The reporting of this finding may also focus attention on similar disease presentations in dogs in FMD endemic countries allowing a better understanding of the prevalence of such events.


2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Phubet Satsook ◽  
Sukanya Rattanatabtimtong ◽  
Lak Piasai ◽  
Patcharapa Towiboon ◽  
Chalermchart Somgird ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 419
Author(s):  
Daehyun Kim ◽  
Joonho Moon ◽  
Jaejung Ha ◽  
Doyoon Kim ◽  
Junkoo Yi

Vaccination against foot-and-mouth disease is the most common method for preventing the spread of the disease; the negative effects include miscarriage, early embryo death, lower milk production, and decreased growth of fattening cattle. Therefore, in this study, we analyze the side effects of vaccination by determining the acute immune response and ovulation rate after vaccinating cows for foot-and-mouth disease. The test axis was synchronized with ovulation using 100 Hanwoo (Bos taurus coreanae) cows from the Gyeongsangbuk-do Livestock Research Institute; only individuals with estrus confirmed by ovarian ultrasound were used for the test. All test axes were artificially inseminated 21 days after the previous estrus date. The control group was administered 0.9% normal saline, the negative control was injected intramuscularly with lipopolysaccharide (LPS; 0.5 µg/kg), and the test group was administered a foot-and-mouth disease virus vaccine (FMDV vaccine; bioaftogen, O and A serotypes, inactivated vaccine) 2, 9, and 16 days before artificial insemination. White blood cells and neutrophils increased significantly 1 day after vaccination, and body temperature in the rumen increased for 16 h after vaccination. Ovulation was detected 1 day after artificial fertilization by ovarian ultrasound. The ovulation rates were as follows: control 89%, LPS 60%, FMDV vaccine (−2 d) 50%, FMDV vaccine (−9 d) 75%, and FMDV vaccine (−16 d) 75%. In particular, the FMDV vaccine (−2 d) test group confirmed that ovulation was delayed for 4 days after artificial insemination. In addition, it was confirmed that it took 9 days after inoculation for the plasma contents of haptoglobin and serum amyloid A to recover to the normal range as the main acute immune response factors. The conception rate of the FMDV vaccine (−2 d) group was 20%, which was significantly lower than that of the other test groups.


2007 ◽  
Vol 14 (11) ◽  
pp. 1472-1482 ◽  
Author(s):  
Julie Perkins ◽  
Satya Parida ◽  
Alfonso Clavijo

ABSTRACT Liquid array technology has previously been used to show proof of principle of a multiplexed nonstructural protein serological assay to differentiate foot-and-mouth disease virus-infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B, and 3D and the recombinant protein signature 3ABC in combination with four controls. To determine the diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed by using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright, United Kingdom. This serum panel has been used to assess the performance of other singleplex enzyme-linked immunosorbent assay (ELISA)-based nonstructural protein antibody assays. The 3ABC signature in the multiplexed assay showed performance comparable to that of a commercially available nonstructural protein 3ABC ELISA (Cedi test), and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex was acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promote further assay development and optimization to generate an assay for routine use in foot-and-mouth disease serological surveillance.


2018 ◽  
Vol 32 (12) ◽  
pp. 6706-6723 ◽  
Author(s):  
Huisheng Liu ◽  
Qiao Xue ◽  
Weijun Cao ◽  
Fan Yang ◽  
Linna Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document