Biochemical Characterization of Bread Wheat (Triticum aestivum L.) Genotypes Based on SDS-PAGE

Author(s):  
D. Sharma ◽  
V. Saharan ◽  
Arunabh Joshi ◽  
D. Jain
PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41570 ◽  
Author(s):  
Liang Chen ◽  
Linzhou Huang ◽  
Donghong Min ◽  
Andy Phillips ◽  
Shiqiang Wang ◽  
...  

1989 ◽  
Vol 93 (1) ◽  
pp. 123-131
Author(s):  
NANCY J. LANE ◽  
STEPHEN M. DILWORTH

Septate junctions are found only in invertebrate tissues, and are almost ubiquitous within them. In arthropods, the two major types are the ‘pleated’ and the ‘smooth’ varieties. Using tissues from different species, including the cockroach Periplaneta americana, procedures have been established for obtaining membrane fractions selectively enriched in septate junctions. The junctions have been identified in pellets of these fractions by both thin sectioning and freeze-fracturing. SDS-PAGE of these membrane fractions reveals two major polypeptide species with apparent molecular weights of 22000–24000 and 17000–18000. Consistent differences in these apparent molecular weights are observed between the pleated and smooth varieties of septate junction. These polypeptides are probably integral membrane components, as they remain associated after treatment with high concentrations of urea. Evidence suggests a plane of weakness in the mid-line of the extracellular septal ribbons.


2016 ◽  
Vol 15 (3) ◽  
pp. 390-401 ◽  
Author(s):  
Alexandra M. Allen ◽  
Mark O. Winfield ◽  
Amanda J. Burridge ◽  
Rowena C. Downie ◽  
Harriet R. Benbow ◽  
...  

2018 ◽  
Vol 28 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Carlos Eduardo Serrano-Maldonado ◽  
Israel García-Cano ◽  
Augusto González-Canto ◽  
Eliel Ruiz-May ◽  
Jose Miguel Elizalde-Contreras ◽  
...  

The <i>atlD</i> gene from<i></i> an <i>Enterococcus faecalis</i> strain isolated from a Mexican artisanal cheese was cloned, sequenced and expressed in <i>Escherichia coli</i> in order to perform a biochemical characterization<i>.</i> A partial amino acid sequence of the heterologous protein was obtained by LC-MS/MS, and it corresponded to a novel peptidoglycan hydrolase designated AtlD. Its molecular mass was 62–75 kDa, as determined by SDS-PAGE, zymography, Western blot, and exclusion chromatography. Electrofocusing rendered an isoelectric point (pI) of 4.8. It exhibited N-acetylglucosaminidase activity, with an optimal pH and temperature between 6–7 and 50°C, respectively. It retained 85% activity with NaCl at 1,000 mM, but it was susceptible to divalent ions, particularly Zn<sup>2+</sup>. It showed antibacterial activity against <i>Listeria monocytogenes</i>,<i> Staphylococcus aureus</i>, and enterococcal<i></i> strains of clinical origin. Due to the fact that it showed activity versus pathogenic bacteria, and because of its capabilities under ionic strength, temperature, and pH values present in food matrices, it could be applied as an additive in the food industry. This study will aid in the design of new antibacterial agents of natural origin to combat food-borne diseases, and it could be used as an industrial or hospital hygiene agent as well.


2002 ◽  
Vol 367 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Dipali SINHA ◽  
Mariola MARCINKIEWICZ ◽  
David GAILANI ◽  
Peter N. WALSH

Human factor XI, a plasma glycoprotein required for normal haemostasis, is a homodimer (160kDa) formed by a single interchain disulphide bond linking the Cys-321 of each Apple 4 domain. Bovine, porcine and murine factor XI are also disulphide-linked homodimers. Rabbit factor XI, however, is an 80kDa polypeptide on non-reducing SDS/PAGE, suggesting that rabbit factor XI exists and functions physiologically either as a monomer, as does prekallikrein, a structural homologue to factor XI, or as a non-covalent homodimer. We have investigated the structure and function of rabbit factor XI to gain insight into the relation between homodimeric structure and factor XI function. Characterization of the cDNA sequence of rabbit factor XI and its amino acid translation revealed that in the rabbit protein a His residue replaces the Cys-321 that forms the interchain disulphide linkage in human factor XI, explaining why rabbit factor XI is a monomer in non-reducing SDS/PAGE. On size-exclusion chromatography, however, purified plasma rabbit factor XI, like the human protein and unlike prekallikrein, eluted as a dimer, demonstrating that rabbit factor XI circulates as a non-covalent dimer. In functional assays rabbit factor XI and human factor XI behaved similarly. Both monomeric and dimeric factor XI were detected in extracts of cells expressing rabbit factor XI. We conclude that the failure of rabbit factor XI to form a covalent homodimer due to the replacement of Cys-321 with His does not impair its functional activity because it exists in plasma as a non-covalent homodimer and homodimerization is an intracellular process.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Rinky Rajput ◽  
Richa Sharma ◽  
Rani Gupta

An extracellular keratinase from Bacillus pumilus KS12 was purified by DEAE ion exchange chromatography. It was a 45 kDa monomer as determined by SDS PAGE analysis. It was found to be an alkaline, serine protease with pH and temperature optima of 10 and 60C, respectively. It was thiol activated with two- and eight-fold enhancement in presence of 10 mM DTT and β-mercaptoethanol, respectively. In addition, its activity was stimulated in the presence of various surfactants, detergents, and oxidizing agents where a nearly 2- to 3-fold enhancement was observed in presence of H2O2 and NaHClO3. It hydrolyzed broad range of complex substrates including feather keratin, haemoglobin, fibrin, casein,and α-keratin. Analysis of amidolytic activity revealed that it efficiently cleaved phenylalanine → leucine → alanine- p-nitroanilides. It also cleaved insulin B chain between Val2- Asn3, Leu6-Cys7 and His10-Leu11 residues.


Sign in / Sign up

Export Citation Format

Share Document