scholarly journals NUMERICAL STUDY OF TWO VERTICAL AXIS WIND TURBINES DARRIEU TYPE LINED UP IN FUNCTION OF POWER COEFFICIENT1

2017 ◽  
Vol 6 (3) ◽  
Author(s):  
Rodrigo Spotorno Vieira ◽  
Luiz Alberto Oliveira Rocha ◽  
Liércio André Isoldi ◽  
Elizaldo Domingues Dos Santos

In this work is performed a numerical study of the main operational principle of a VAWT (Vertical Axis Wind turbine) and the influence of the distance between two aligned turbines over their power coefficient. The main aims here are to evaluate the applicability of the numerical model studied here in further optimization studies of VAWT and evaluate the effect of the distance between turbines (d) on the device power coefficient. To achieve these goals, it is considered an incompressible, transient and turbulent flow on a two dimensional domain with two fluid zones, one being rotational representing the rotation of the blades. The time-averaged mass conservation equations and momentum are numerically solved using the finite volume method, more precisely with the software FLUENTÒ. For the approach of turbulence is used to classical modeling of turbulence (RANS) with standard model k - ε. Other geometric parameters: turbine radius (R), the airfoil profile (NACA0018) and chorus were held constant. The verification results showed a good agreement with those presented in the literature, even employing a simplified domain. It was also observed that the distance (d) directly affects the power of the second turbine. For the best case, with d =10m, the downstream turbine showed an approximate 50% drop in power coefficient in comparison with that obtained for the upstream turbine. While in the worst case, with d =2m, the power coefficient for the downstream turbine decreased two hundred times in comparison with that achieved for the upstream one. It was also noted that there is a great possibility of disposal area optimization of turbines in future studies. Keywords: Vertical Axis Wind turbine, Numerical study, Power coefficient, turbine distance.

2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 821 ◽  
Author(s):  
Mohammad Ebrahimpour ◽  
Rouzbeh Shafaghat ◽  
Rezvan Alamian ◽  
Mostafa Safdari Shadloo

Exploiting wind energy, which is a complex process in urban areas, requires turbines suitable for unfavorable weather conditions, in order to trap the wind from different directions; Savonius turbines are suitable for these conditions. In this paper, the effect of overlap ratios and the position of blades on a vertical axis wind turbine is comprehensively investigated and analyzed. For this purpose, two positive and negative overlap situations are first defined along the X-axis and examined at the different tip speed ratios of the blade, while maintaining the size of the external diameter of the rotor, to find the optimum point; then, the same procedure is done along the Y-axis. The finite volume method is used to solve the computational fluid dynamics. Two-dimensional numerical simulations are performed using URANS equations and the sliding mesh method. The turbulence model employed is a realizable K-ε model. According to the values of the dynamic torque and power coefficient, while investigating horizontal and vertical overlaps along the X- and Y-axis, the blades with overlap ratios of HOLR = +0.15 and VOLR = +0.1 show better performances when compared to other corresponding overlaps. Accordingly, the average Cm and Cp improvements are 16% and 7.5%, respectively, compared to the base with a zero overlap ratio.


Author(s):  
N. Cristobal Uzarraga-Rodriguez ◽  
A. Gallegos-Mun˜oz ◽  
J. Manuel Riesco A´vila

A numerical analysis of a rooftop vertical axis wind turbine (VAWT) for applications in urban area is presented. The numerical simulations were developed to study the flow field through the turbine rotor to analyze the aerodynamic performance characteristics of the device. Three different blade numbers of wind turbine are studied, 2, 3 and 4, respectively. Each one of the models was built in a 3D computational model. The effects generated in the performance of turbines by the numbers of blades are considered. A Sliding Mesh Model (SMM) capability was used to present the dimensionless form of coefficient power and coefficient moment of the wind turbine as a function of the wind velocity and the rotor rotational speed. The numerical study was developed in CFD using FLUENT®. The results show the aerodynamic performance for each configuration of wind turbine rotor. In the cases of Rooftop rotor the power coefficient increases as the blade number increases, while in the case of Savonius rotor the power coefficient decrease as the blades number increases.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Yan Yan ◽  
Eldad Avital ◽  
John Williams ◽  
Jiahuan Cui

Abstract A numerical study was carried out to investigate the effects of a Gurney flap (GF) on the aerodynamics performance of the NACA 00 aerofoil and an associated three-blade rotor of a H-type Darrieus wind turbine. The flow fields around a single aerofoil and the vertical axis wind turbine (VAWT) rotor are studied using unsteady Reynolds-averaged Navier–Stokes equations (URANS). The height of GF ranges from 1% to 5% of the aerofoil chord length. The results show that the GF can increase the lift and lift-to-drag ratio of the aerofoil as associated with the generation of additional vortices near the aerofoil trailing edge. As a result, adding a GF can significantly improve the power coefficient of the VAWT at low tip speed ratio (TSR), where it typically gives low power production. The causing mechanism is discussed in detail, pointing to flow separation and dynamic stall delay.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Amin A. Mohammed ◽  
Ahmet Z. Sahin ◽  
Hassen M. Ouakad

Abstract A double multiple streamtube model coupled with variable pitch methodology is used to analyze the performance characteristics of a small-scale straight-bladed Darrieus type vertical axis wind turbine (SB-VAWT). The numerical study revealed that a fixed pitch of −2.5 deg could greatly enhance the performance of the wind turbine. However, no improvement is observed in the starting torque capacity. Furthermore, the performance of upwind and downwind zones has been investigated, and it is found that the VAWT starting capacity is improved by increasing/decreasing the pitch angle upwind/downwind of the turbine. To optimize the performance, four cases of variable pitch angle schemes of sinusoidal nature were examined. The parameters of the sinusoidal functions were optimized using differential evolution (DE) algorithm with different cost functions. The results showed improvement in the power coefficient, yet with low starting capacity enhancement. Among the objective functions used in DE algorithm, the negative of the average power coefficient is found to lead to the best starting capacity with moderate peak power coefficient.


Author(s):  
Louis Angelo Danao ◽  
Jonathan Edwards ◽  
Okeoghene Eboibi ◽  
Robert Howell

Numerical simulations using RANS–based CFD have been utilised to carry out investigations on the effects of unsteady wind in the performance of a wind tunnel vertical axis wind turbine. Using a validated CFD model, unsteady wind simulations revealed a fundamental relationship between instantaneous VAWT CP and wind speed. CFD data shows a CP variation in unsteady wind that cuts across the steady CP curve as wind speed fluctuates. A reference case with mean wind speed of 7m/s, wind speed amplitude of ±12%, fluctuating frequency of 0.5Hz and mean tip speed ratio of 4.4 has shown a wind cycle mean power coefficient of 0.33 that equals the steady wind maximum. Increasing wind speed causes the instantaneous tip speed ratio to fall which leads to higher effective angle of attack and deeper stalling on the blades. Stalled flow and rapid changes in angle of attack of the blade induce hysteresis loops in both lift and drag. Decreasing wind speeds limit the perceived angle of attack seen by the blades to near static stall thus reducing the positive effect of dynamic stall on lift generation. Three mean tip speed ratio cases were tested to study the effects of varying conditions of VAWT operation on the overall performance. As the mean tip speed ratio increases, the peak performance also increases.


Author(s):  
Nur Alom ◽  
Satish Chandra Kolaparthi ◽  
Sarath Chandra Gadde ◽  
Ujjwal K. Saha

Savonius-style wind turbine (SSWT), a class of vertical-axis wind turbine, appears to be promising for off-shore applications because of its design simplicity, good starting ability, insensitivity to wind direction, relatively low operating speed, low cost and easy installation. Various blade shapes have been used over the years to improve the performance of this class of turbine. In the recent past, an elliptic-bladed profile with sectional cut angle of 50° has shown its potential to harness the wind energy more efficiently. The present study aims to optimize this profile by numerical simulations. In view of this, the elliptical-bladed profiles are tested at different sectional cut angles of θ = 45°, 47.5°, 50° and 55°. The shear stress transport (SST) k-ω turbulence model is used to simulate the flow field, and thereafter, the torque and power coefficients are obtained at the rotating conditions. From 2D simulation, pressure and velocity contours are generated and analyzed. 2D simulations are also carried out for a semi-circular bladed profile in order to have a direct comparison. The numerical study demonstrates an improved flow characteristics, and hence the power coefficient of the elliptical-bladed profile at = 47.5°. Finally, 3D simulation is carried out to visualize and analyze the flow field around the optimum elliptical-bladed rotor at a tip speed ratio of 0.8. The aspect ratio of the rotor for the 3D simulation is kept at 0.7.


Author(s):  
N. C. Uzarraga-Rodriguez ◽  
A. Gallegos-Muñoz ◽  
Maria T. Parra-Santos ◽  
Juan M. Belman-Flores

A numerical analysis of a three-bladed straight vertical axis wind turbine with NACA0015 airfoils-shaped is presented. The effect generated on the moment coefficient and power coefficient of the wind turbine rotor by the twist angle variation at the chord ends was analyzed. The configurations included the variation of blade twist angle of 15° and 30° located at 70%, 80% and 90% of chord length from leading end of the straight blade. The numerical study was developed in a commercial Computational Fluid Dynamics (CFD) using FLUENT®. This code allows to solve the Reynolds averaged Navier-Stokes equations and the transport equations of the turbulence quantities. The results show the aerodynamic performance for each configuration of the blade twist angle in the wind turbine, and are compared with data obtained from straight blade without twist angle. The wind turbine performance decrease about 67% as the blade twist angle increases, due to an increment in the drag force causing a negative moment against the rotation of vertical axis wind turbine. Also, the surface pressure distribution in a VAWT’s is presented.


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


Sign in / Sign up

Export Citation Format

Share Document