scholarly journals MODELING AND PERFORMANCE ASSESSMENT OF INVERTED INTERMITTENT GAS LIFT

2007 ◽  
Vol 6 (1) ◽  
pp. 96 ◽  
Author(s):  
S. N. Bordalo ◽  
C. O. Carvalho Filho

The Intermittent Gas Lift (IGL) is an artificial lift method for petroleum production suitable for producing wells from depleted or low productivity reservoirs. In order to enhance the well production, many variants of the conventional IGL have been developed and used worldwide. One of these variants, the Inverted IGL (IGL-I), consists of removing the gas lift valve and reversing the flow paths inside the well: gas is injected through the tubing whereas liquid is lifted through the casing annulus. The oil production is believed to increase with the IGL-I due to the larger annulus storage capacity, at the expense of higher injected gas volumes. Despite of its potential for practical applications, the IGL-I has not been covered by the literature. Aiming to surmount such  gap in the literature, this paper presents a model for the dynamical behavior of the IGL-I wells. The complexity emerged from the IGL-I cyclic operation is assessed through a simultaneous and coupled simulation scheme, comprising a variable set of non-linear algebraic equations and non-linear time-differential equations for the flow of oil and gas throughout the injection, transfer, elevation, production, decompression and loading stages of each cycle. The simulator provides the engineer with a valuable tool to investigate the well behavior of several IGL cycles. Based on the observed results, the designer may propose practical recommendations regarding the IGL-I design and operation.

2020 ◽  
Vol 37 (4) ◽  
pp. 1548-1573
Author(s):  
Sofía Avila-Becerril ◽  
Gerardo Espinosa-Pérez ◽  
Oscar Danilo Montoya ◽  
Alejandro Garces

Abstract In this paper, the control problem of microgrids (MGs)operating in islanded mode is approached from a passivity-based control perspective. A control scheme is proposed that, relying only on local measurements for the power converters included in the network representation, achieves both voltage regulation and power balance in the network through the generation of grid-forming and grid-following nodes. From the mathematical perspective, the importance of the contribution lies in the feature that, exploiting a port-controlled Hamiltonian representation of the MG, the closed-loop system’s stability properties are formally proved using arguments from the theory of non-linear dynamical systems. Fundamental for this achievement is the decomposition of the system into subsystems that require a control law and another whose variables can evolve in a free way. From the practical viewpoint, the advantage of the proposed controller lies in the feature that the power demanded by the loads is satisfied without neither computing its specific value nor solving the non-linear algebraic equations given by the power flow, avoiding the computational burden associated with this task. The usefulness of the scheme is illustrated via a numerical simulation that includes practical considerations.


2014 ◽  
Vol 704 ◽  
pp. 118-130
Author(s):  
Hanane Moulay Abdelali ◽  
Mounia El Kadiri ◽  
Rhali Benamar

The present work concerns the nonlinear dynamic behaviour of fully clamped skew plates at large vibration amplitudes. A model based on Hamilton’s principle and spectral analysis has been used to study the large amplitude free vibration problem, reducing the non linear problem to solution of a set of non-linear algebraic equations. Two methods of solution have been adopted, the first method uses an improved version of the Newton-Raphson method, and the second leads to explicit analytical expressions for the higher mode contribution coefficients to the first non-linear mode shape of the skew plate examined. The amplitude dependent fundamental mode shape and the associated non-linear frequencies have been obtained by the two methods and a good convergence has been found. It was found that the non-linear frequencies increase with increasing the amplitude of vibration, which corresponds to the hardening type effect, expected in similar cases, due to the membrane forces induced by the large vibration amplitudes. The non-linear mode exhibits a higher bending stress near to the clamps at large deflections, compared with that predicted by linear theory. Numerical details are presented and the comparison made between the results obtained and previous ones available in the literature shows a satisfactory agreement. Tables of numerical results are given, corresponding to the linear and nonlinear cases for various values of the skew angle θ and various values of the vibration amplitude. These results, similar to those previously published for other plates, are expected to be useful to designers in the need of accurate estimates of the non-linear frequencies, the non linear strains and stresses induced by large vibration amplitudes of skew plates.


2014 ◽  
Vol 701-702 ◽  
pp. 1173-1176
Author(s):  
Vitaly Viktorovich Pivnev ◽  
Sergey Nikolaevich Basan

The way of calculating the currents and voltages in nonlinear resistive electrical circuits , based on the use of power series (Taylor, Maclaurin) is considered . The advantage of this method lies in the fact that while it implementation it is not necessary to a system of nonlinear equations. To determine the numerical values ​​of the coefficients of the power series corresponding system of linear algebraic equations are solved. Nonlinear operations are limited to the calculation of the numerical values ​​of currents, voltages and their derivatives with respect to the pole equations of nonlinear elements.


Author(s):  
B. Panigrahi ◽  
G. Pohit

AbstractAn interesting phenomenon is observed while conducting numerical simulation of non-linear dynamic response of FGM (functionally graded material) beam having large amplitude motion under harmonic excitation. Instead of providing a frequency sweep (forward or backward), if amplitude is incremented and response frequency is searched for a particular amplitude of vibration, solution domain can be enhanced and stable as well as unstable solution can be obtained. In the present work, first non-linear differential equations of motion for large amplitude vibration of a beam, which are obtained using Timoshenko beam theory, are converted into a set of non-linear algebraic equations using harmonic balance method. Subsequently an amplitude incremental iterative technique is imposed in order to obtain steady-state solution in frequency amplitude plane. It is observed that the method not only shows very good agreement with the available research but the domain of applicability of the method is enhanced up to a considerable extent as the stable and unstable solution can be captured. Subsequently forced vibration response of FGM beams are analysed.


2021 ◽  
Vol 73 (05) ◽  
pp. 21-27
Author(s):  
Stephen Rassenfoss

Gas lift is one of the most popular ways to increase oil-well production, and it is no secret that it is an underperformer. Back in 2014, ExxonMobil reported that by creating a team of roving gas-lift experts it was able to add an average of 22% more output on several hundred wells where the gas injection had been optimized. Gains were expected because “wells do not remain the same over time; they change,” said Rodney Bane, global artificial-lift manager at ExxonMobil, in this JPT story covering the 2014 SPE Artificial Lift Conference and Exhibition (https://jpt.spe.org/paying-close-attention-gas-lift-system-can-be-rewarding). The problem with gas injection is that change is hard. Injection adjustment or repairs require either pulling the tubing to reach the injection mandrels or a wireline run. Those with good- producing wells, particularly offshore, need to weigh the possible gain against the cost and lost production during the job. Those managing more and more wells live with iffy data, injection systems prone to malfunction, horizontal wells prone to irregular flows, and a time-consuming process for calculating the proper injection rates. New approaches addressing those negatives have led a few big operators to try new systems designed to allow constant adjustments based on downhole data with electric control systems designed to be more reliable. Programmable digital controls raise an obvious question: How do you take advantage of that capability? Constantly updated injection data based on traditional evaluation methods is the first step. And new capabilities are inspiring new thinking about how injected gas lifts production and how to make it work more efficiently. Optimizing the process has not been a priority in gas lift. “It was a fairly imprecise thing. But the beauty of gas lift is it works even where it’s broken. It’s not a pump; it’s flow assurance,” said Brent Vangolen, surface and base management technology manager with Occidental. Occidental is among the early adopters of new gas-lift methods along with companies including Chevron, Shell, ExxonMobil, Petronas, and ADNOC. Vangolen expects the industry will follow. “Gas lift is going through the same transformation as rod pumps went through in the 60s and 70s,” he said. Back then, rod pump engineers began tracking changes in the load on the rod through each pump stroke by using dynamometer cards. That data was used to better program pump controls. “You went from egg timers on pumping units to full-blown optimization pumpoff controllers, variable speed drives … this huge infant technology that changed the rod pump space,” he said. Papers at last year’s SPE artificial lift conference covered the continuing digitization in rod lift and that gas lift was finally moving in that direction.


1968 ◽  
Vol 19 (4) ◽  
pp. 357-367 ◽  
Author(s):  
A. C. Walker ◽  
D. G. Hall

SummaryThe Rayleigh-Ritz finite element method is used to obtain an approximate solution of the exact non-linear energy functional describing the large deflection bending behaviour of a simply-supported inextensible uniform beam subjected to point loads. The solution of the non-linear algebraic equations resulting from the use of this method is effected, using three different techniques, and comparisons are made regarding the accuracy and computing effort involved in each. A description is given of an experimental investigation of the problem and comparison of the results with those of the numerical method, and of the available exact continuum analyses, indicates that the numerical method provides satisfactory predictions for the non-linear beam behaviour for deflections up to one quarter of the beam’s length.


Author(s):  
Sergio N. Bordalo ◽  
Ismael O. Ochoa Lara

The intermittent gas-lift (IGL) methods still remain a practical recourse for the extended production of petroleum wells in the on-shore fields of Brazil. The IGLs are a natural candidate to substitute the continuous gas-lift (CGL) method at a late stage of reservoir depletion; as so the IGLs require modest adaptation to the CGL installation. The IGLs also display operational and economical characteristics that make it a viable artificial lift method for many low producing wells. In such cases, it becomes advantageous to properly design the system and to optimize it. A laboratory apparatus was designed and built to study the operation of the conventional IGL, such as the concurrency of cycle stages, as presented by Carvalho (2004), the fallback for different operating conditions and the stability of cycles due to motor valve timing and adjustment of the gas-lift valve. The results of the tests performed by changing the operating variables of the IGL are presented here. These tests results show the types of dynamical behavior predicted by numerical simulations; therefore they will be useful in tuning the simulation models that will be applied to the large scale systems of petroleum fields.


Author(s):  
K. K. Botros ◽  
P. J. Campbell ◽  
D. B. Mah

Dynamic simulation of the operation of a compressor station requires mathematical modelling of the dynamic behaviour of the compressor unit and various piping elements. Such models consist of large systems of non-linear partial differential equations describing the pipe flow together with non-linear algebraic equations describing the quasi-steady flow through various valves, constrictions and compressors. In addition, the models also include mathematical descriptions of the control system which consists of mixed algebraic and ordinary differential (mad) equations with some inequalities representing controllers’ limits. In this paper a numerical technique for the solution of the gas dynamics equations is described, which is based on the transfer matrix formulation relating the state vector time-difference at one side of an element to that on the other side. This approach facilitates incorporation of all elements transfer matrices into an overall transfer matrix according to the system geometrical connectivity. The paper also presents simulation results and comparison with actual field measurements of three case histories: 1) simulation of a compressor surge protection control process; 2) unit startup; and 3) slow transient of a compressor station responding to changes in the discharge pressure set point. Good agreement between simulation results and field measurements is demonstrated.


2017 ◽  
Vol 27 (6) ◽  
pp. 1282-1303 ◽  
Author(s):  
M.M. Rahman ◽  
Sourav Saha ◽  
Satyajit Mojumder ◽  
Khan Md. Rabbi ◽  
Hasnah Hasan ◽  
...  

Purpose The purpose of this investigation is to determine the nature of the flow field, temperature distribution and heat and mass transfer in a triangular solar collector enclosure with a corrugated bottom wall in the unsteady condition numerically. Design/methodology/approach Non-linear governing partial differential equations (i.e. mass, momentum, energy and concentration equations) are transformed into a system of integral equations by applying the Galerkin weighted residual method. The integration involved in each of these terms is performed using Gauss’ quadrature method. The resulting non-linear algebraic equations are modified by the imposition of boundary conditions. Finally, Newton’s method is used to modify non-linear equations into the linear algebraic equations. Findings Both the buoyancy ratio and thermal Rayleigh number play an important role in controlling the mode of heat transfer and mass transfer. Originality/value Calculations are performed for various thermal Rayleigh numbers, buoyancy ratios and time periods. For each specific condition, streamline contours, isotherm contours and iso-concentration contours are obtained, and the variation in the overall Nusselt and Sherwood numbers is identified for different parameter combinations.


Sign in / Sign up

Export Citation Format

Share Document