scholarly journals A COMPARISON BETWEEN RANDOM AND DETERMINISTIC DYNAMICS OF RIVER DRAINAGE BASINS FORMATION

2009 ◽  
Vol 8 (1) ◽  
pp. 65
Author(s):  
C. A. Marin ◽  
M. R. Errera

This work contributes to the discussion on how and why tree networks in drainage basin arises in nature. A fully deterministic erosion model recently developed was used to explain the spontaneous origin of river networks, which until then was assumed to be due to the optimal reduction of the flow resistance in a area to point flow. A random evolution model was devised in order to investigate the contribution of two separate features: the relative area size of the network and the structure (configuration) of the network. Two random models were applied, namely, restricted random choosing selection and fully random. Results showed that indeed the mere presence of low flow resistance portions of the basin does improve global performance and that randomness does not create networks. Further gain in performance is given by the network formation by erosion or by optimization. This suggest that local factors also are important to the explanation of the very existence of natural networks.

Fractals ◽  
1998 ◽  
Vol 06 (03) ◽  
pp. 245-261 ◽  
Author(s):  
M. R. Errera ◽  
A. Bejan

This paper shows that the dendritic patterns formed by low-resistance channels in a river drainage basin are reproducible and can be deduced from a single principle that acts at every step in the development of the pattern: the constrained minimization of global resistance in area-to-point flow. The river basin is modeled as a two-dimensional territory with Darcy flow through a saturated heterogeneous porous medium with uniform flow addition per unit area. From one step to the next, small elements of the porous medium are dislodged and removed in ways that minimize the global flow resistance. The removed elements are replaced by channels with lower flow resistance. The channels form a dendritic pattern that is deterministic, not random. The finest details of this structure are sensitive to internal properties and external forcing, i.e. variations in the local properties of the flow medium, and the manner in which the total area-to-point flow rate varies as the structure develops. Remarkably insensitive to such effects are the basic type and rough size of the flow structure (channels versus no channels, dendrite, number of branches) and the minimized global resistance to flow.


Author(s):  
Paweł Franczak ◽  
Michał Hudyka ◽  
Krzysztof Buczek ◽  
Marek Górnik

<p>The paper refers to spatial diversity and lability of outflow from Flysh type drainage basins. It also shows dynamics of mean and high discharge by defining the trend, the variability index and the periodicity of the hydrological parameters mentioned. The research has been taken in the partial drainage basins located in the upper drainage basin of Skawica (the streams of Czatożanka, Marków Potok, Rybny Potok, Jaworzyna) and in the upper drainage basin of Czarna Orawa (Kiczorka) at the Babia Góra slopes. The analyzed two-year period (2012–2013) has been characterized comparing to the multiannual period of 1973–2014. The hydrological and meteorological data have been obtained due to monitoring of the hydrological environment of Babiogórski National Park. The database includes the data gained from The Institute of Meteorology and Water Management research. Poland is the one of the less water-rich European countries. The unit outflow is only 5.5 dm3·s-1·km-2 (Fall 1997). The water outflow is very space and time varied through the whole country. The outflow from drainage basins of Babia Góra area is one of the biggest in Poland (about 30 dm3·s-1·km-2). The outflow index (rate of outflow?) from Babia Góra area is 88% per annum, which distinguishes this area from the Beskidy Mountains. During the winter semester the outflow index is 12.7% and during the summer semester it is 70% (Łajczak).</p><p>The outflow index and the seasonal lability of the outflow from the particular Babia Góra drainage basins are very varied which is the most noticeable between the northern and southern slopes located drainage basins, however the variety is also very clear to observe from the east to the west direction. The analyzed cycle were a general low-flow period including one thaw flood within this period (2012s) and several minor floods caused by severe rainfalls (2013s). The maximum unit outflow during the flood has been noticed in Czatożanka drainage basin and the minimum unit outflow has been noticed in Kiczorka drainage basin. The highest annual average unit outflow occurred within Marków Potok, and the lowest annual average unit outflow occurred within Czatożanka. The drainage basins located at the northern slopes of Babia Góra were characterized by big seasonal outflow fluctuation between winter and summer semesters. Only at the southern slopes in the Kiczorka drainage basin the outflow was not much varied comparing the particular semesters.</p>


2020 ◽  
Vol 42 (3) ◽  
pp. 293-303
Author(s):  
VALERIY BONDAREV

The theoretical and methodological basis of the systems hierarchical spatial and temporal analysis of a drainage basin, which addresses the problems of effective management in socio-natural systems of different ranks, is considered. It is proposed to distinguish 9 orders of forms that are relevant to the analysis of drainage basins, where the first level is represented by individual aggregates and particles, and the last - by basins of large and the largest rivers. As part of the allocation of geological, historical and modern time intervals, the specificity of the implementation of processes in basins of different scales from changing states, through functioning to evolution is demonstrated. The interrelation of conditions and factors that determine the processes occurring within the drainage basins is revealed. It is shown that a specific combination of conditions and factors that determine processes in the drainage basin is associated with the hierarchy of the objects under consideration, i.e. the choice of a spatial-temporal hierarchical level is crucial for the organization of study within drainage basins. At one hierarchical level, some phenomenon can be considered as a factor, and at another - as a condition. For example, tectonic processes can be considered as an active factor in the evolution of large river basins in the geological perspective, but for small drainage basin, this is already a conservative background condition. It is shown that at the historical time the anthropogenic factor often comes to the fore, with the appearance of which in the functioning of the drainage basin, there is a need to take into account the entire complex of socio-environmental problems that can affect the sustainable state of various territories, especially in the field of water and land use. Hierarchical levels of managing subjects are identified, which are primarily responsible for effective management at the appropriate hierarchical level of the organization of the socio-natural system within the catchment area, starting from an individual to humankind as a whole.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 827
Author(s):  
Gasper L. Sechu ◽  
Bertel Nilsson ◽  
Bo V. Iversen ◽  
Mette B. Greve ◽  
Christen D. Børgesen ◽  
...  

River valley bottoms have hydrological, geomorphological, and ecological importance and are buffers for protecting the river from upland nutrient loading coming from agriculture and other sources. They are relatively flat, low-lying areas of the terrain that are adjacent to the river and bound by increasing slopes at the transition to the uplands. These areas have under natural conditions, a groundwater table close to the soil surface. The objective of this paper is to present a stepwise GIS approach for the delineation of river valley bottom within drainage basins and use it to perform a national delineation. We developed a tool that applies a concept called cost distance accumulation with spatial data inputs consisting a river network and slope derived from a digital elevation model. We then used wetlands adjacent to rivers as a guide finding the river valley bottom boundary from the cost distance accumulation. We present results from our tool for the whole country of Denmark carrying out a validation within three selected areas. The results reveal that the tool visually performs well and delineates both confined and unconfined river valleys within the same drainage basin. We use the most common forms of wetlands (meadow and marsh) in Denmark’s river valleys known as Groundwater Dependent Ecosystems (GDE) to validate our river valley bottom delineated areas. Our delineation picks about half to two-thirds of these GDE. However, we expected this since farmers have reclaimed Denmark’s low-lying areas during the last 200 years before the first map of GDE was created. Our tool can be used as a management tool, since it can delineate an area that has been the focus of management actions to protect waterways from upland nutrient pollution.


2013 ◽  
Vol 39 (1) ◽  
pp. 105-118
Author(s):  
Jacek Kurnatowski

Abstract Identification of coefficients determining flow resistance, in particular Manning’s roughness coefficients, is one of the possible inverse problems of mathematical modeling of flow distribution in looped river networks. The paper presents the solution of this problem for the lower Oder River network consisting of 78 branches connected by 62 nodes. Using results of six sets of flow measurements at particular network branches it was demonstrated that the application of iterative algorithm for roughness coefficients identification on the basis of the sensitivity-equation method leads to the explicit solution for all network branches, independent from initial values of identified coefficients.


2016 ◽  
Vol 4 (4) ◽  
pp. 831-869 ◽  
Author(s):  
Andrew D. Wickert

Abstract. Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.


2015 ◽  
Vol 12 (8) ◽  
pp. 8175-8220 ◽  
Author(s):  
M. Fonley ◽  
R. Mantilla ◽  
S. J. Small ◽  
R. Curtu

Abstract. Two hypotheses have been put forth to explain the magnitude and timing of diel streamflow oscillations during low flow conditions. The first suggests that delays between the peaks and troughs of streamflow and daily evapotranspiration are due to processes occurring in the soil as water moves toward the channels in the river network. The second posits that they are due to the propagation of the signal through the channels as water makes its way to the outlet of the basin. In this paper, we design and implement a theoretical experiment to test these hypotheses. We impose a baseflow signal entering the river network and use a linear transport equation to represent flow along the network. We develop analytic streamflow solutions for two cases: uniform and nonuniform velocities in space over all river links. We then use our analytic solutions to simulate streamflows along a self-similar river network for different flow velocities. Our results show that the amplitude and time delay of the streamflow solution are heavily influenced by transport in the river network. Moreover, our equations show that the geomorphology and topology of the river network play important roles in determining how amplitude and signal delay are reflected in streamflow signals. Finally, our results are consistent with empirical observations that delays are more significant as low flow decreases.


1976 ◽  
Vol 3 (4) ◽  
pp. 555-562
Author(s):  
J. Penel ◽  
T. Kung

Due to the lack of stream guaging stations, a peak flow simulation based on physical and meteorological parameters was established for the area along the proposed Mackenzie Valley Highway between Fort Good Hope and the Dempster Highway.Calculations based on snowmelt and rain-on-snow runoff were developed, as it was found that the snowmelt of May or early June gave the yearly spring peak discharge.Due to the gap in existing flow data, a unit hydrograph method was developed to generate additional yearly spring peak discharges. Altogether, hydrographs from four gauged watersheds of similar physical conditions with size ranging from 250 to 8 200 mi2 (648 to 21 240 km2) were used. In total, 46 yearly peak flows were generated.A regression equation of peak discharge computation was derived, using different hydrological and meteorological parameters. It was found that the most significant factors were the drainage basin area, the lake areas in the drainage basin, the water equivalent of the snow on the ground prior to melt, the rainfall in the period close to peak discharges, and the duration of snowmelt.The simulation was calibrated for drainage basins between 100 and 10 000 mi2 (250 to 25 000 km2).


2020 ◽  
Vol 7 (1) ◽  
pp. 13-22
Author(s):  
Rupak Nath ◽  
◽  
S M Kharbuli

Cyprinid fishes of Meghalaya were investigated from twin drainage basins Brahmaputra and Barak-Surma-Meghna. 27 cyprinid fishes under 14 genus and 7 sub families were recorded from rivers and reservoirs of four different gradient zones. The diversity of Cyprinid fishes was highest with 49% representation of Cyprinids at lower elevation Zone IV below 500 m above MSL and bio diversity indices estimated as H: 3.05, 1-D: 0.10. In contrary lowest diversity with 7% representation of fishes was observed at elevation 1501 to 2000 m above MSL in Zone I with bio diversity indices H: 0.25, 1-D: 0.57. Distribution of commercially important cyprinids under genus Labeo, Systomus and Cirrhinus were found to be restricted to rivers of Barak-Surma-Meghna drainage basin. Catch percentage of cyprinids indicates that 70% of fishes exhibit occasional occurrence and 30% as common occurrence. High percentage of occasional occurrence, low catch composition percentage and with restricted distribution of commercially important fishes to only certain rivers of Barak-Surma-Meghna drainage is an indication of depletion of cyprinid resources in the state and requires taking multi prong conservation measures to protect cyprinid fishes in Meghalaya.


Sign in / Sign up

Export Citation Format

Share Document