scholarly journals Energy Savings Potential Associated with Reactive Power in Water Pumping Systems

This paper presents the potential of energy saving in water pumping system. A sample of 32 pumping units has been chosen randomly for the current work. Measurements of power quality energy loss were performed, using Fluke 437-ii power quality and energy analyzer. It was found that energy losses due to reactive power is about 22% of the total power energy losses in water pumping units in Jordan. Losses due to reactive power is 14.57 GWh in 2012 with an expected cost of 51.2 GWh during 2015-2017; unless reactive power is cured.

Author(s):  
E. I. Gracheva ◽  
A. N. Gorlov ◽  
Z. M. Shakurova

The article examines the main features of the layout of electrical equipment for shop networks of internal power supply with the definition of indicators for a group of shop customers connected to a single power center, affecting the choice of the structure of schemes for shop network sites. The parameters characterizing the circuit topology are revealed. A study is presented of the influence of the load factor of workshop transformers on their reactive power factor, it is proved by calculation by technical and economic criteria the feasibility of replacing a workshop transformer with two with a lower total power. The calculation of energy savings in the in-plant power supply systems. The type of dependences tgφ of transformers ТМ and ТСЗ with various rated powers in the function of loading transformers is established. The most significant factors of the growth of idle power losses during operation are presented. With determination of losses of active and reactive power and electricity in transformers and losses of active power in a high voltage distribution network A feasibility study was carried out on the options for internal power supply schemes with two transformers of lower power installed instead of one, and the feasibility of such a replacement to increase the efficiency of the equipment was proved and the estimated payback period for the investment capital was determined. A comparative analysis of the studied power supply schemes of industrial enterprises with the identification of their advantages and disadvantages.


2018 ◽  
Vol 19 (2) ◽  
pp. 472-481 ◽  
Author(s):  
Bouach Ahcene ◽  
Benmamar Saadia

Abstract The energy overconsumption at drinking-water pumping stations creates considerable energy losses. For this reason we have developed an NNGA tool of pumping management which optimizes the consumed energy by the pumping system with respect to the hydraulic functioning conditions in the distribution tank. This tool includes two models: a forecasting model for drinking water demand based on artificial neural networks and an optimization model using genetic algorithms. The results of the NNGA tool were compared with two pumping plans: the plan based on the pumping regulation model, and the plan used by the company of water and sewage of the city of Algiers. The analysis result was done with the help of performed indicators that we have developed and which enable the evaluation and diagnosis of the energetic function's system.


Author(s):  
C. Bharatiraja ◽  
Harish Chowdary V

Power Quality (PQ) brings more challenges to the large- scale and medium scale industries because in the recent years most of them use high efficiency and low energy devices which cause vulnerable PQ disturbances at Point of Common Coupling (PCC). In this paper, the measurement at different times during load condition and analysis of all types of disturbances occurred has been done. When large rated equipments run, the disturbance (harmonics, RMS variations, and switching transients) levels are very high and poor power factor (PF) has also appeared. Due to this poor PF, reactive power consumption in load increases and accordingly total power increases. An electronic device such as LED lights, fluorescent lamps, computers, copy machines, and laser printers also disturb the supply voltage. We are very well known that every PQ problem directly or indirectly must affect economically. Many researchers have investigated PQ audit for over three decades. However these studies and analysis have been done only at simulation level. Hence, the PQ analyzer based study is required to find out the PQ issues at distribution feeders. It will be a valuable guide for researchers, who are interested in the domain of PQ and wish to explore the opportunities offered by these techniques for further improvement in the field of PQ. This paper gives a brief Real Time PQ measurement using PQ analyzer HIOKI PW3198 at Distribution Feeders and it gives an idea to the researcher to optimize problems-related to PQ with respect to the high rated and low rated electric machinery of different feeders at PCC level. This study further extends to analyze the grid disturbances and looks forward to the optimization methods for each individual PQ disturbance.


Author(s):  
Sonali Goel ◽  
Prajnasmita Mohapatra ◽  
R. K. Pati

Agriculture requires energy as an important input to production. Agriculture consumes about 35 per cent of the total power generated through electrically operated pump sets. It is expected that about 30 per cent of savings is possible through appropriate technology. Agriculture uses energy directly as fuel or electricity to operate machinery and equipment, to heat or cool buildings, and for lighting on the farm, and indirectly in the fertilizers and chemicals produced off the farm. Agricultural technology is changing rapidly. Farm machinery, farm building and production facilities are constantly being improved. Agricultural applications suitable for photovoltaic (PV) solutions are numerous. These applications are a mix of individual installations and systems installed by utility companies when they have found that a PV solution is the best solution for remote agricultural need such as water pumping for crops or livestock. A solar powered water pumping system is made up of two basic components. These are PV panels and pumps. The smallest element of a PV panel is the solar cell. Each solar cell has two or more specially prepared layers of semiconductor material that produce direct current (DC) electricity when exposed to light. This DC current is collected by the wiring in the panel. It is then supplied either to a DC pump, which in turn pumps water whenever the sun shines ,or stored in batteries for later use by the pump. The aim of this article is to explain how solar powered water pumping system works and what the differences with the other energy sources are.


Author(s):  
Shrey Verma ◽  
Shubham Mishra ◽  
Subhankar Chowdhury ◽  
Ambar Gaur ◽  
Subhashree Mohapatra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document