scholarly journals Energetic optimization and evaluation of a drinking water pumping system: application at the Rassauta station

2018 ◽  
Vol 19 (2) ◽  
pp. 472-481 ◽  
Author(s):  
Bouach Ahcene ◽  
Benmamar Saadia

Abstract The energy overconsumption at drinking-water pumping stations creates considerable energy losses. For this reason we have developed an NNGA tool of pumping management which optimizes the consumed energy by the pumping system with respect to the hydraulic functioning conditions in the distribution tank. This tool includes two models: a forecasting model for drinking water demand based on artificial neural networks and an optimization model using genetic algorithms. The results of the NNGA tool were compared with two pumping plans: the plan based on the pumping regulation model, and the plan used by the company of water and sewage of the city of Algiers. The analysis result was done with the help of performed indicators that we have developed and which enable the evaluation and diagnosis of the energetic function's system.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6676
Author(s):  
Muhammad Saydal Khan ◽  
Ali Tahir ◽  
Imtiaz Alam ◽  
Sohail Razzaq ◽  
Muhammad Usman ◽  
...  

This paper investigates the impact of tube wells on the discharge and water table of the Quetta Valley aquifer and conducts a financial analysis of the solar photovoltaic water pumping system (SPVWP) in comparison with a typical pumping system for the Water and Sanitation Agency of Quetta’s (WASA) tube wells. Quetta Valley is dependent on groundwater as surface resources are on decline and unpredictable. The population of this city has exponentially increased from 0.26 million in 1975 to 2.2 million in 2017 which has put a lot of pressure on the groundwater aquifer by installing more than 500 large capacity tube wells by WASA and Public Health Engineering (PHE) departments in addition to thousands of low-capacity private tube wells. The unprecedented running of these wells has resulted in drying of the historical Karez system, agricultural activities, and the sharp increase in power tariffs. There are 423 tube wells in operation installed by WASA in addition to PHE, Irrigation and Military Engineering Services (MES), which covers 60% of the city’s water demand. The results will be beneficial for organizations and positively impact the operation of these wells to meet public water demand. For the two zones, i.e., Zarghoon and Chiltan in Quetta Valley, recommendations are given for improved water management.



2013 ◽  
Vol 48 ◽  
pp. 141-151 ◽  
Author(s):  
M. Bakker ◽  
J.H.G. Vreeburg ◽  
K.M. van Schagen ◽  
L.C. Rietveld


2017 ◽  
Vol 132 (3-II) ◽  
pp. 1016-1021 ◽  
Author(s):  
R. Kiliç ◽  
R. Kozan ◽  
D. Karayel ◽  
S.S. Özkan




This paper presents the potential of energy saving in water pumping system. A sample of 32 pumping units has been chosen randomly for the current work. Measurements of power quality energy loss were performed, using Fluke 437-ii power quality and energy analyzer. It was found that energy losses due to reactive power is about 22% of the total power energy losses in water pumping units in Jordan. Losses due to reactive power is 14.57 GWh in 2012 with an expected cost of 51.2 GWh during 2015-2017; unless reactive power is cured.



2021 ◽  
Vol 11 (9) ◽  
pp. 4290
Author(s):  
Andrea Menapace ◽  
Ariele Zanfei ◽  
Maurizio Righetti

The evolution of smart water grids leads to new Big Data challenges boosting the development and application of Machine Learning techniques to support efficient and sustainable drinking water management. These powerful techniques rely on hyperparameters making the models’ tuning a tricky and crucial task. We hence propose an insightful analysis of the tuning of Artificial Neural Networks for drinking water demand forecasting. This study focuses on layers and nodes’ hyperparameters fitting of different Neural Network architectures through a grid search method by varying dataset, prediction horizon and set of inputs. In particular, the architectures involved are the Feed Forward Neural Network, the Long Short Term Memory, the Simple Recurrent Neural Network and the Gated Recurrent Unit, while the prediction interval ranges from 1 h to 1 week. To avoid the problem of the Neural Networks tuning stochasticity, we propose the selection of the median model among several repetitions for each hyperparameter’s configurations. The proposed iterative tuning procedure highlights the change of the required number of layers and nodes depending on Neural Network architectures, prediction horizon and dataset. Significant trends and considerations are pointed out to support Neural Network application in drinking water prediction.





2017 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Ali Nasser Hilo

The low level of water in rivers in Iraq leads to poor water quality, on that basis; we need to assess Iraq's water resources for uses of irrigation and drinking water. This study present a model accounts for ground water quality by using a water quality index (WQI) for the region defined between the city of Kut and the city of Badra in Wasit province. this study relies on a system of wells set up along the path through the Badra –Kut  and around it  up to 78 wells. The study showed poor quality of ground water in the region of study and it is unsuitability for irrigation and drinking water, as well as provided a solution to the water accumulated in the Shuwayja to reduce the bad effect on groundwater by using a system of branch and collection canals  then pumping at the effluent  of Al  Shuwayja in seasons of rainy season ..Water quality index calculated depend on the basis of various physic-chemical parameters as PH, Ec , TDS, TSS, Nacl , SO4 ,Na , and  Mg. The resultant and analytical are present with use of Arch GIS program – geostastical analysis for the water index and water quality parameters



2018 ◽  
Vol 28 (4) ◽  
pp. 1259-1264
Author(s):  
Kiril Lisichkov ◽  
Katerina Atkovska ◽  
Neven Trajchevski ◽  
Orce Popovski ◽  
Nadica Todorovska

The presence of some chemical compounds at higher levels than maximum permissible concentrations (MPC) in the drinking water, suggests of water resources pollution. In this paper the following elements were analyzed: total arsenic, cadmium, lead, cooper and zinc. Twelve samples of water from the water supply system from the city of Skopje were examined during one year from three different springs. Also, ten samples of bottled water from three producers from the Macedonian market were tested.The determined average mass concentrations of total As, Cd(II), Pb(II), Cu(II) and Zn(II) in the analyzed water samples from the water supply system are 1.35 μg/l, 0.06 μg/l, 0.6 μg/l, 0.9 μg/l and 1,12 μg/l, respectively, and for the tested bottled water, the mean values ranges from 0.56 - 0.83 μg total As / l, 0.053 - 0.056 μg Cd(II)/l, 0.51 - 0.54 μg Pb(II)/l , 0.6 - 0.87 μg Cu(II)/l and 0.68 - 0.8 μg Zn(II)/l water.The following instrumental analytical methods and techniques were used for the analysis of the tested samples of drinking water: flame atomic absorption spectroscopy (AAS), atomic absorption spectroscopy with hydride cеll, electrothermal atomic absorption spectroscopy.The obtained results are shown in tables and graphic form. According to the obtained results a comparative analysis was carried out indicate that it is a water of good quality that can be used in different branches of the process industry.The obtained results in this paper do not exceed the values of the MPC of the Republic of Macedonia prescribed by the legal regulations for the drinking water, which confirm the health safety of the drinking water from the water supply system in the city of Skopje and the packed waters from the Macedonian market in relation to the tested elements.



2020 ◽  
Vol 14 (2) ◽  
pp. 194-204
Author(s):  
Anuradha Tomar

Background: Despite so many developments, most of the farmers in the rural areas are still dependent on rainwater, rivers or water wells, for irrigation, drinking water etc. The main reason behind such dependency is non-connectivity with the National grid and thus unavailability of electricity. To extract the maximum power from solar photovoltaic (SPV) based system, implementation of Maximum Power Point Tracking (MPPT) is mandatory. PV power is intermittent in nature. Variation in the irradiation level due to partial shading or mismatching phenomena leads to the development of modular DC-DC converters. Methods: A stand-alone Multi-Input Dual-Output (MIDO) DC-DC converter based SPV system, is installed at a farm; surrounded with plants for water pumping with stable flow (not pulsating) along with battery energy storage (BES) for lighting. The proposed work has two main objectives; first to maximize the available PV power under shadowing and mismatching condition in case of series/ parallel connected PV modules and second is to improve the utilization of available PV energy with dual loads connected to it. Implementation of proposed MIDO converter along with BES addresses these objectives. First, MIDO controller ensures the MPPT operation of the SPV system to extract maximum power even under partial shading condition and second, controls the power supplied to the motor-pump system and BES. The proposed system is simulated in MATLAB/ SIMULINK environment. Real-time experimental readings under natural sun irradiance through hardware set-up are also taken under dynamic field conditions to validate the performance. Results and Conclusion: The inherent advantage of individual MPPT of each PV source in MIDO configuration, under varying shadow patterns due to surrounding plants and trees is added to common DC bus and therefore provides a better impact on PV power extraction as compared to conventional PV based water pumping system. Multi-outputs at different supply voltages is another flag of MIDO system. Both these aspects are implemented and working successfully at 92.75% efficiency.



Sign in / Sign up

Export Citation Format

Share Document