scholarly journals Calculation of the economy of electric energy in industrial electrical supply systems

Author(s):  
E. I. Gracheva ◽  
A. N. Gorlov ◽  
Z. M. Shakurova

The article examines the main features of the layout of electrical equipment for shop networks of internal power supply with the definition of indicators for a group of shop customers connected to a single power center, affecting the choice of the structure of schemes for shop network sites. The parameters characterizing the circuit topology are revealed. A study is presented of the influence of the load factor of workshop transformers on their reactive power factor, it is proved by calculation by technical and economic criteria the feasibility of replacing a workshop transformer with two with a lower total power. The calculation of energy savings in the in-plant power supply systems. The type of dependences tgφ of transformers ТМ and ТСЗ with various rated powers in the function of loading transformers is established. The most significant factors of the growth of idle power losses during operation are presented. With determination of losses of active and reactive power and electricity in transformers and losses of active power in a high voltage distribution network A feasibility study was carried out on the options for internal power supply schemes with two transformers of lower power installed instead of one, and the feasibility of such a replacement to increase the efficiency of the equipment was proved and the estimated payback period for the investment capital was determined. A comparative analysis of the studied power supply schemes of industrial enterprises with the identification of their advantages and disadvantages.

2019 ◽  
Vol 114 ◽  
pp. 04006
Author(s):  
Bui Ngoc Hung ◽  
Lidiia I. Kovernikova

Coal mining is one of the important economic sectors in Vietnam. Power supply systems of coal mines and open-cuts are complex. They have multiple levels of voltages and different types of loads. New electrical equipment usually works alongside with the equipment that is obsolete and worn-out. Power supply systems of industrial areas of Vietnam where coal is mined are characterized by the low power quality. In Vietnam the indices which characterize the distortion of both voltage and current waveforms have standard values. The article presents the findings upon the analysis of a power supply system of a coal open-cut in Vietnam and the electrical equipment of the coal sorting plant along with the results of the experimental studies of power quality indices and the non-sinusoidal mode parameters. The measurement analysis has shown that the indices of the 5-th and 7-th harmonics of voltage were over the limits. There are interharmonics in voltages and currents. The article analyzes the characteristics of active filters. It is possible to improve the power quality by using an active filter which generates both reactive power to increase the load power factor and harmonic and interharmonic currents to reduce the degree of voltage and current waveform distortion.


2020 ◽  
Vol 174 ◽  
pp. 03026
Author(s):  
Fedor Nepsha ◽  
Vyacheslav Voronin ◽  
Roman Belyaevsky ◽  
Vladimir Efremenko ◽  
Kirill Varnavskiy

In this article, the authors discuss the use of FACTS devices in coal mine power systems. The problems of reactive power compensation and the disadvantages of regulatory and technical documentation regarding the use of modern reactive power compensation devices are considered. The main types of FACTS devices that can be used in coal mines are identified. The scientific publications in the field of application of FACTS devices in power supply systems of industrial enterprises are analyzed. The cost indicators of FACTS devices are considered and conclusions are drawn on the theoretical technical and economic efficiency of using FACTS devices in mine conditions.


2019 ◽  
pp. 58-65
Author(s):  
Yryskeldi Kargabaev ◽  
Kubat Osmonaliev

The article deals with the tasks of ensuring the required quality of electricity in modern power systems of industrial enterprises. The main tasks of designing and operating modern power supply systems for industrial enterprises are in addition to the rational choice of elements of power supply systems, it is also to ensure the required quality of electricity at the terminals of the power receivers. Ensuring the required quality of electricity is generally associated with the electromagnetic compatibility of the supplynetwork. The intensification of production processes is associated with the improvement of technological processes and the introduction of advanced technologies, with the use of high-performance equipment, in particular, valve converters, welding plants, powerful metalworking machines are being introduced. They are currently controlled using digital technology, these devices strictly impose high demands on the quality of electrical energy.In connection with the requirements of the quality of electricity, in the Russian Federation every 10-15 years new standards are developed, where the indicators of the quality of electric energy are normalized


Author(s):  
Yaroslav Bederak ◽  
Viktor Taradai ◽  
Hanna Kyselova ◽  
Vladlen Kyselov

The publication presents the most common and promising models and schemes for replacing the power supply system of industrial enterprises, and an example of their use in practice for power supply to sewage treatment plants of a chemical enterprise. Various types of models are considered (in tabular form, in the form of an electrical replacement circuit or in the form of a finite-state machine), as well as a logical-probabilistic approach to the representation of the power supply system. The use of automation systems in power supply systems of industrial enterprises can reduce the total number of accidents, prevent their development, reduce the time of disconnections of electrical installations and downtime of mechanisms, and also allows to transfer to work without constant maintenance a significant number of electrical installations of substations, which, in turn, leads to a reduction in the number of service personnel, increase labor productivity and reduce maintenance costs. One of the main tasks on the way to automating the power supply system of enterprises is to present it in the form of a model. The list of replacement models and schemes that can be used to represent the power supply system of enterprises is quite large, and choosing the appropriate model, for that best meets the requirements of the final goal is quite a complex scientific task. The purpose of this article is to analyze the most common and promising models and schemes for replacing the power supply system and provide recommendations on their application in practice for power supply to sewage treatment plants of a chemical enterprise. Presenting the power supply system in the form of a table allows you to simplify and visually perform certification of electrical equipment, identify problem and weak points in the power supply system of industrial enterprises. Such a table proves that a large amount of electrical equipment at lower levels depends on a single electrical device at higher levels. The representation of the power supply system in the form of a three-phase symmetric replacement circuit can be used to calculate short-circuit currents in symmetric and unbalanced modes in the MatLab program and similar. Using the model of the power supply system in the form of a finite-state machine allows you to visually check the reliability of power supply to consumers, simplify the design of the power supply system of an industrial enterprise, select the state of switching devices in the power supply system and take into account the advantages and disadvantages of each state. It is advisable to use the methods discussed in this article to represent the power supply system (in tabular form, in the form of a finite-state machine or a three-phase symmetric replacement scheme) and their further application and use in automated power supply systems of industrial enterprises. The logical-probabilistic method allows us to consider the issue of power supply reliability based on the theory of logical algebra.


Author(s):  
A. N. Shpiganovich ◽  
A. A. Shpiganovich ◽  
V. I. Zatsepina ◽  
E. P. Zatsepin

The electric power system of the Russian Federation was most developed in the 80-90s of the last century, after which there was an almost twofold decline in the generation and transmission of  electrical energy in the system with subsequent growth. The main  problem of fuel and energy complexes is the progressive aging of  fixed production assets in conditions of increasing energy  consumption requirements, which is a source of increased risk of  major accidents. In this case, negative disturbances can arise both in the system itself and be external to it and can lead not only to a low  quality of electrical energy but also to interruptions in power supply.  The studies carried out to date are devoted to a quantitative  assessment of the reliability of power supply systems and their  equipment and do not take into account the effects of electrical equipment failures on the characteristics of production processes and the operation of technological machines. To consider the reliability of power supply systems in isolation from the operation of other systems (technological, relay protection, automation, ventilation, dewatering, etc.) means not to use the whole range of measures  aimed at improving the reliability of electricity supply, as a result it is impossible to ensure the optimum level of reliability of electricity  supply. Reliability of the power supply system must be evaluated taking into account the interaction of electrical equipment with the  equipment of all production systems. The problem of increasing the  efficiency of the functioning of industrial enterprises by optimizing  the parameters of the reliability of power supply systems is topical and of great economic importance.


2021 ◽  
Vol 13 (4) ◽  
pp. 282-289
Author(s):  
I. V. Naumov ◽  
D. N. Karamov ◽  
A. N. Tretyakov ◽  
M. A. Yakupova ◽  
E. S. Fedorinovа

The purpose of this study is to study the effect of loading power transformers (PT) in their continuous use on their energy efficiency on a real-life example of existing rural electric networks. It is noted that the vast majority of PT in rural areas have a very low load factor, which leads to an increase in specific losses of electric energy when this is transmitted to various consumers. It is planned to optimize the existing synchronized power supply systems in rural areas by creating new power supply projects in such a way as to integrate existing power sources and ensure the most efficient loading of power transformers for the subsequent transfer of these systems to isolated ones that receive power from distributed generation facilities. As an example, we use data from an electric grid company on loading power transformers in one of the districts of the Irkutsk region. Issues related to the determination of electric energy losses in rural PT at different numerical values of their load factors are considered. A computing device was developed using modern programming tools in the MATLAB system, which has been used to calculate and plot the dependence of power losses in transformers of various capacities on the actual and recommended load factors, as well as the dependence of specific losses during the transit of 1 kVA of power through a power transformer at the actual, recommended and optimal load factors. The analysis of specific losses of electric energy at the actual, recommended and optimal load factors of PT is made. Based on the analysis, the intervals of optimal load factors for different rated power of PT of rural distribution electric networks are proposed. It is noted that to increase the energy efficiency of PT, it is necessary to reduce idling losses by increasing the load of these transformers, which can be achieved by reducing the number of transformers while changing the configuration of 0.38 kV distribution networks.


2021 ◽  
Author(s):  
Sergey Goremykin

The textbook describes the main issues of the theory of relay protection and automation of electric power systems. The structure and functional purpose of protection devices and automation of power transmission lines of various configurations, synchronous generators, power transformers, electric motors and individual electrical installations are considered. For each of the types of protection of the above objects, the structure, the principle of operation, the order of selection of settings are given, the advantages and disadvantages are evaluated, indicating the scope of application. The manual includes material on complete devices based on semiconductor and microprocessor element bases. The progressive use of such devices (protection of the third and fourth generations) is appropriate and effective due to their significant advantages. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for students in the areas of training 13.03.02 "Electric power and electrical engineering" (profile "Power supply", discipline "Relay protection and automation of electric power systems") and 35.03.06 "Agroengineering" (profile "Power supply and electrical equipment of agricultural enterprises", discipline "Relay protection of electrical equipment of agricultural objects"), as well as for graduate students and specialists engaged in the field of electrification and automation of industrial and agrotechnical objects.


Author(s):  
Gennady Kornilov ◽  
◽  
Alexandra Varganova ◽  
Andrey Shemetov ◽  
Olga Gazizova ◽  
...  

The article considers the features of design of industrial power supply system of metallurgical enterprises with on-site electrical power generation. The problems of increasing the efficiency of the main electrical equipment of on-site power plants are formulated. The analysis of development trends in the energy sector of Russian metallurgy is carried out, on the basis of which the importance of industrial on-site power plants is shown. The problem of choosing a generator automatic excitation control system of on-site power plants is con-sidered and possible ways of its solution are given. The task of regime optimization of industrial on-site power plants is considered and original optimization algorithms are presented. Methods of increasing the reliability of power supply of critical equipment and mechanisms involved in the technological process of thermal power plants are proposed. The urgency of the tasks of complex automation and digitalization in the industrial power supply systems is shown, while the special meaning of "digital twins" is noted. Possible prospects for the development of on-site power plants in the context of the decarbonization policy and the transition to alternative energy are considered.


Sign in / Sign up

Export Citation Format

Share Document