DEVELOPMENT OF LIQUID CHROMATOGRAPHIC METHOD FOR SIMULTANEOUS DETERMINATION OF BROMHEXINE HYDROCHLORIDE AND ENROFLOXACIN IN FORMULATIONS

INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 44-49
Author(s):  
P Choksi ◽  
◽  
F. Shaikh ◽  
D. A. Shah ◽  
K. Agarwal ◽  
...  

A simple, specific, accurate, precise and reproducible method has been developed and validated for the estimation of bromhexine hydrochloride and enrofloxacin in fixed dose combination using RP-HPLC. The separation was achieved using stationary phase ODS Hypersil C18 column (250 mm× 4.6 mm i.d.) in isocratic mode, with mobile phase containing 0.05 M potassium dihydrogen phosphate buffer (pH 4 by o-phosphoric acid) : methanol: acetonitrile : triethylamine (40:20:40:01), at a flow rate of 1.0mL/min and eluents were monitored at 256 nm. The retention time of enrofloxacin and bromhexine HCl were found to be 3.00 min and 5.1 min respectively. The linearity for bromhexine HCl and enrofloxacin was in the range of 2-15 μg/mL and 20-150 μg/mL, respectively. The method was validated as per ICH guideline. The recoveries of bromhexine HCl and enrofloxacin were found in the range of 99.61-101.65% and 99.52-100.13 %, respectively. The method was successfully applied for the determination of both the drugs in combined dosage form.

2018 ◽  
Vol 101 (2) ◽  
pp. 401-409 ◽  
Author(s):  
Asmaa A El-Zaher ◽  
Ehab F Elkady ◽  
Hanan M Elwy ◽  
Mahmoud Abo El Makarim Saleh

Abstract A new LC method is introduced with the concept of its versatile application to widely used drugs from different pharmacological classes. Metformin hydrochloride (MTF), sitagliptin phosphate (SIT), simvastatin (SIM) and ezetimibe (EZB) were simultaneously determined with a simple reversed-phase LC method in which a SIT–SIM binary mixture, present in a dosage form brand, was considered central for its development. Chromatographic separation was achieved with a mobile phase of acetonitrile and 0.02 M potassium dihydrogen phosphate (pH 5.2) (77 + 23, v/v) flowing through a C18 column (BDS Hypersil, 250 × 4.6 mm, 5 µm) at 1.2 mL/min at ambient temperature. UV detection was programmed to be carried out at 210 nm for EZB, SIT, and MTF, whereas SIM was detected at 240 nm. The method was validated according to International Conference on Harmonization guidelines. Linearity, accuracy, and precision were satisfactory over concentration ranges 4–40 µg/mL for EZB and SIM, 0.5–50 µg/mL for SIT, and 5–500 µg/mL for MTF. Coefficients of determination were >0.99 for the four drugs. LOQs found were 0.01 µg/mL for EZB, 0.02 µg/mL for SIT, 0.2 µg/mL for MTF, and 0.02 µg/mL for SIM. The developed method is simple, rapid, accurate, precise, and suitable for the routine QC analysis of the cited drugs in pharmaceutical products by conventional HPLC systems.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (06) ◽  
pp. 46-50
Author(s):  
V. V. Khanvilkar ◽  
◽  
M Toraskar

An accurate, precise and robust RP-HPLC method was developed for the simultaneous estimation of strychnine and gallic acid. The markers were resolved using HiQ C18HS column with methanol and potassium dihydrogen phosphate buffer (10 mM, pH 3) (60:40 V/V) as mobile phase at flow rate of 1 mL per minute and run time of 6 minutes. Retention times of strychnine and gallic acid were 3 and 4.7 minutes, respectively at 264 nm. The linearity range for strychnine and gallic acid was found to be 0.5-3 μg/mL and 1-3.5 µg/mL, respectively with coefficient of linear regression greater than 0.99 for both the markers. The developed method was validated as per ICH Q2 (R1) guidelines and the results obtained were satisfactory. The method was applied for quantification of markers in marketed and In-house formulations of Agnitundi Vati, a polyherbal ayurvedic formulation. The developed method thus could be used for standardization of Agnitundi Vati and other herbal preparations containing these two markers.


1984 ◽  
Vol 67 (2) ◽  
pp. 228-231
Author(s):  
Gregory T Briguglio ◽  
◽  
Cesar A Lau-Cam

Abstract A simple and rapid high performance liquid chromatographic method was developed for the separation and identification of amoxicillin, ampicillin, cloxacillin, dicloxacillin, methicillin, oxacillin, nafcillin, penicillin G potassium, and penicillin V potassium. The antibiotics were separated at ambient temperature on a Chromegabond 10 μm Cis column with acetonitrile-methanol-O.OlM potassium dihydrogen phosphate buffer, pH 4.7 (19 + 11 + 70), at 1 mL/min. A variable wavelength detector set at 225 nm, 0.16 AUFS, and a recorder set at 0.25 cm/min were used for the detection. Individual antibiotics and their mixtures were dissolved in the mobile phase and injected into the chromatograph through a 20 μL injection loop. Baseline separation was observed for virtually all 9 antibiotics. The entire mixture was resolved in less than 30 min. The method was sensitive, reproducible, and applicable to the qualitative analysis of commercial dosage forms.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (03) ◽  
pp. 54-58
Author(s):  
Priyanka Jadeja ◽  
◽  
Jaimin S. Patel ◽  
Dimal A. Shah ◽  
Vandana B. Patel

A specific, accurate, precise, and reproducible liquid chromatographic method has been developed and validated for the estimation of acamprosate calcium and baclofen in combination. The separation was achieved using stationary phase Phenomenex C18 column (150 mm× 4.6 mm.) in isocratic mode, with mobile phase containing 0.05 M potassium dihydrogen orthophosphate buffer (pH 7) : acetonitrile (10:90 V/V), at a flow rate of 1.0 mL/min and effluents were monitored at 210 nm. The retention time of acamprosate calcium and baclofen were found to be 1.9 min and 5.3 min, respectively. The linearity for acamprosate calcium and baclofen were in the range of 2-64 µg/mL and 1.2- 38.4 µg/mL, respectively. The method was validated as per ICH guideline. The recoveries of Acamprosate calcium and baclofen were found in the range of 98.90 - 100.13 % and 98.60 -100.02 %, respectively. The method was successfully applied for the determination of both the drugs in combination.


2020 ◽  
Vol 10 (6) ◽  
pp. 6669-6675

The main purpose of this study was to develop and validate an efficient HPLC/UV method for determination of valsartan and atenolol and to introduce the dissolution profiles of tablets; The resolution of peaks was best achieved with Zorbax C8 (4.6 mm i.d. X 150 mm, 5 μm) column. Samples were chromatographed in a isocratic mode (methanol and 25 mM solution potassium dihydrogen phosphate pH 7.3 (55:45, V/V)), pumped with 1.0 mL/min at 40 °C set temperature of column oven, with UV detector set to 225 nm wavelength; The total chromatographic run time was 6 minutes. The retention time of valsartan is 1.753 min, atenolol – 3.064 min. Linearity was examined and proven at different concentration levels in the range of working concentration of valsartan ( 0.16-0.96 mg/mL) and atenolol (0.2–1.2 mg/mL). The high value of recoveries obtained for valsartan and atenolol indicates that the proposed method was found to be accurate. In all three dissolution media the releases of valsartan and atenolol are more than 85% in 15 min A rapid, simple, accurate, selective, and sensitive method was developed for the determination of valsartan and atenolol in dosage forms. The method was strictly validated according to the ICH guidelines. Acquired results demonstrate that proposed strategy can be effortlessly and advantageously applied for routine quality control of drugs and in vitro dissolution study.


2020 ◽  
Vol 16 (8) ◽  
pp. 1037-1051
Author(s):  
Ehab Farouk Elkady ◽  
Marwa Ahmed Fouad ◽  
Abdulgabar A. Ezzy Faquih

Background: Atenolol is a selective beta 1 blocker that can be used alone or in combination with hydrochlorothiazide or with chlorthalidone for the treatment of hypertension and prevention from a heart attack. Objective: The main target of this work was to improve modern, easy, accurate and selective liquid chromatographic method (RP-HPLC) for the determination of these drugs in the presence of their degradation products. These methods can be used as analytical gadgets in quality control laboratories for a routine examination. Methods: In this method, the separation was accomplished through an Inertsil® ODS-3V C18 column (250 mm x 4.6 mm, 5 μm), the mobile phase used was 25 mM aqueous potassium dihydrogen orthophosphate solution adjusted to pH 6.8 by using 0.1M sodium hydroxide and acetonitrile (77 : 23, v/v), the flow rate used was 1 ml/min and detection was achieved at 235 nm using UV. Results: All peaks were sharp and well separated, the retention times were atenolol degradation (ATN Deg.) 2.311 min, atenolol (ATN) 2.580 min, hydrochlorothiazide degradation (HCT Deg.) 5.890 min, hydrochlorothiazide (HCT) 7.016 min, chlorthalidone degradation CTD Deg 8.018 min and chlorthalidone (CTD) 14.972 min. Linearity was obtained and the range of concentrations was 20- 160 μg/ml for atenolol, 10-80 μg/ml for hydrochlorothiazide and 10-80 μg/ml for chlorthalidone. According to ICH guidelines, method validation was accomplished, these methods include linearity, accuracy, selectivity, precision and robustness. Conclusion: The optimized method demonstrated to be specific, robust and accurate for the quality control of the cited drugs in pharmaceutical dosage forms.


2015 ◽  
Vol 98 (6) ◽  
pp. 1496-1502 ◽  
Author(s):  
Ramzia I El-Bagary ◽  
Ehab F Elkady ◽  
Shereen Mowaka ◽  
Maria Attallah

Abstract Two simple, accurate, and precise chromatographic methods have been developed and validated for the determination of dronedarone (DRO) HCl and amiodarone (AMI) HCl either alone or in binary mixtures due to the possibility of using AMI as a counterfeit of DRO because of its lower price. First, an RP-HPLC method is described for the simultaneous determination of DRO and AMI. Chromatographic separation was achieved on a BDS Hypersil C18 column (150 × 4.6 mm, 5 μm). Isocratic elution based on potassium dihydrogen phosphate buffer with 0.1% triethylamine pH 6–methanol (10 + 90, v/v) at a flow rate of 2 mL/min with UV detection at 254 nm was performed. The second method is RP ultra-HPLC in which the chromatographic separation was achieved on an AcclaimTM RSLC 120 C18 column (100 × 2.1 mm, 2.2 μm) using isocratic elution with potassium dihydrogen phosphate buffer with 0.1% triethylamine pH 6–methanol (5 + 95, v/v) at a flow rate of 1 mL/min with UV detection at 254 nm. Linearity, accuracy, and precision of the two methods were found to be acceptable over the concentration ranges of 5–80 μg/mL for both DRO and AMI. The results were statistically compared using one-way analysis of variance. The optimized methods were validated and proved to be specific, robust, precise, and accurate for the QC of the drugs in their pharmaceutical preparations.


2017 ◽  
Vol 100 (6) ◽  
pp. 1869-1878 ◽  
Author(s):  
Bixia Yang ◽  
Lian Wang ◽  
Chunying Luo ◽  
Xixi Wang ◽  
Chengjun Sun

Abstract An analytical method was developed for the simultaneous determination of 11 aminoglycoside (AG) antibiotics, including amikacin, paromomycin, dihydrostreptomycin, gentamicin C1a, hygromycin, kanamycin, netilmicin, spectinomycin, sisomicin, streptomycin, and tobramycin in honey, milk, and pork samples by LC with tandem MS and molecularly imprinted polymer (MIP) SPE. The AG antibiotics in milk and homogenated meat samples were extracted with a solution composed of 10 mmol/L potassium dihydrogen phosphate, 0.4 mmol/L EDTA-Na2, and 2% trichloroacetic acid. For honey samples, the extractant was 50 mmol/L potassium dihydrogen phosphate. The extracts were cleaned up with MIP SPE cartridges. The separation was performed on a zwitter ionic-HILIC column (50 × 2.1 mm, 3.5 μm), with the mobile phase consisting of methanol, 0.3% formic acid, and 175 mmol/L ammonium formate at 0.50 mL/min in gradient elution. A triple-quadrupole mass spectrometer equipped with an electrospray ionization source, which was operated in positive mode, was used for detection. The quantification was based on matrix-matched calibration curves. The method was applied to real samples with three different matrixes. The LODs of the method were 2–30 μg/kg and the LOQs were 7–100 μg/kg; the average recovery ranged from 78.2 to 94.8%; intraday RSDs and interday RSDs were ≤15 and ≤18%, respectively; and the absolute values of matrix effect for all AGs were RSDs ≤23%.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Laura D. Simionato ◽  
Leonardo Ferello ◽  
Sebastián Stamer ◽  
Patricia D. Zubata ◽  
Adriana I. Segall

Simple, sensitive, and economical simultaneous volumetric and HPLC methods for the determination of pridinol mesylate in raw material have been developed. The volumetric method is based on the reaction of pridinol with sodium lauryl sulphate in diluted sulphuric acid. Dimethyl yellow was used as indicator to detect the end point of the titration in aqueous/organic layer. The HPLC method for the determination of pridinol mesylate employs a reverse phase C18 column at ambient temperature with a mobile phase consisting of acetonitrile: 0.05 M potassium dihydrogen phosphate, pH adjusted to 5.0 (1 : 2, v/v). The flow rate was 0.8 mL/min. Quantitation was achieved with UV detection at 258 nm based on peak area. Both methods were found to be suitable for the quality control of pridinol mesylate in raw material.


Sign in / Sign up

Export Citation Format

Share Document