DESIGN OF PRONIOSOMAL GEL CONTAINING EUGENOL AS AN ANTIFUNGAL AGENT FOR THE TREATMENT OF ORAL CANDIDIASIS

INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (09) ◽  
pp. 55-57
Author(s):  
T. S Vishnu ◽  
◽  
A. Dubey ◽  
G.S Ravi ◽  
S. Hebbar

The objective of this study was to design and investigate the antifungal activity of proniosomal gel of eugenol for the treatment of oral candidiasis. The proniosomal gel was prepared by coacervation phase separation method using different surfactants like spans 20, 60, 80, soya lecithin and cholesterol. The proniosomal gel formulations were evaluated for visual inspection, pH detection, viscosity, spreadability, in vitro drug release and kinetics study, and in vivo studies. The compatibility study indicated that the drug and the excipients were compatible with each other. The results showed that pH, viscosity and spreadability were all acceptable for topical preparation. In vitro drug release study and drug release kinetics were conducted to check the release study and drug release patterns of the formulation. Amongst the formulations, an optimized formulation was selected to conduct an in vivo study. Candida albicans was used to induce oral candidiasis for the evaluation of therapeutic efficacy of proniosomal gel in immunosuppressed rats. Activity was analysed by microbiological and histopathological techniques and was compared with the marketed product. It is evident from the study that the proniosomal gel shows sustained release trend with strong antifungal activity.

Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Author(s):  
Nani Tadhi ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Transdermal patch is a drug delivery device in which the drugs are incorporated and is design in such a way that it releases the drug in sustained and at predetermined rate to deliver the drug through the skin to the systemic circulation painlessly. The aim of this research study was to formulate a controlled and sustained release transdermal matrix type patch of Methimazole. The matrix patch was prepared by solvent casting method using a various polymer in different concentration, HPMC (hydrophilic), Eudragit RL100 and Ethyl cellulose (hydrophobic) polymer. Total 9 prototype formulation were prepared and it was subjected for various evaluation test; weight uniformity, Folding endurance, thickness, Drug content, percent moisture content, percent Moisture uptake and In-vitro drug release study using Franz diffusion cell. The in-vitro CDR% data was fit into kinetics model to see the release kinetics from the patches. The Formulation F5 was choosen as a best formulation according to in-vitro drug release study. The in-vitro release was found 81.12 % in 12 hours, it followed zero order kinetics. The nature of polymer and concentration ratio of polymers plays a crucial role for obtaining a good transdermal patch design; therefore optimisation is very important step to formulate a desired TDDS. Therefore the result of the study encourages a further study and is hopeful that the present study would contribute to the recent pharmaceutical research for formulation development.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


2021 ◽  
Vol 62 (2) ◽  
pp. 144-162
Author(s):  
Mounika Chidurala ◽  
Raveendra Reddy J

Introduction: The drawbacks assosiated with oral administration of drugscan be controlled or minimized by gastro retentive formulations that remain buoyant within the stomach for an extended time by providing prolonged gastric retention and releasethe drug in an exceedingly extended manner thereby improving bioavailability. The current research was to develop and optimize Domperidone and Famotidine floating tablets with extended release by Quality by Design approach. Method: Based on QTPP (Quality Target Product Profile), CQAs (Critical Quality Attributes)wereidentified. Risk analysis by the evaluation of formulation and process parameters showed that optimizing the levels of polymers could reduce high risk to achieve the target profile. A 23factor experimental design with midpoints was selected for statistical analysis and optimization. Results: HPMC K100 and Carbopol 934P had a positive effect while ethyl cellulose demonstrated a negative effect on the selected responses. Drug release kinetics followed the first-order release with Higuchi diffusion and Fickian diffusion. Optimized formula satisfying all the required parameters was selected and evaluated. The predicted response values were in close agreement with experimental response values. Abdominal X-ray imaging after oral administration of the tablets on a healthy rabbit’s stomach confirmed the extended floating behavior with shorter lag time. In vivo, pharmacokinetic studies in rabbits revealed that the optimized formulation exhibited prolonged drug release with enhanced Cmax, tmax, AUCo-t, and t1/2 of an optimized product when compared to the marketed product. Conclusions: It has been concluded that the application of Quality by Design in the formulation and optimization reduced the number of trials to produce a cost-effective formula.


2021 ◽  
Vol 16 ◽  
Author(s):  
Mounika Chidurala ◽  
Raveendra Reddy J

Background: The present research aimed to develop and optimize extended-release floating tablets of Sacubitril and Valsartan through Quality by Design (QbD) approach. Risk analysis by formulation assessment and process parameters showed that optimizing the levels of the polymer will minimize high risk to meet the target profile. A two (2) level three (3) full factorial experimental design along with midpoints was carefully chosen for optimization and statistical analysis. Based on the literature, the independent and dependent variables were selected. Results: HPMC K100, Carbopol 934P had a positive effect, whereas Ethylcellulose had a negative effect on Floating time, drug release at 2 h, drug release at 12 h and, 50% responses. Drug release kinetics followed the first-order release with Higuchi and Fickian diffusion. Contour and overlay plots were utilized for an assortment of design space and optimized formula. ANOVA results of all the factors exhibited significance at p<0.05. Abdominal X-ray imaging of the optimized tablets on healthy rabbit’s stomach confirmed the floating behavior for more than 12 h. In vivo pharmacokinetic studies in rabbits showed that the optimized formulation exhibited prolonged and extended drug release with improved Cmax, tmax, AUCo-t, and t1/2 of test product when compared to marketed product. IVIVC model was developed by using dissolution data of in vitro and pharmacokinetics data of in-vivo by de-convolution method (Wagner-Nelson method). Conclusion: The Quality by Design implementation in the formulation and optimization abridged the number of trials to produce a cost-effective formula. In vivo studies confirmed that the formula was successfully developed with extended floating time (12 h) and drug release by risk analysis and experimental designs. Level A correlation was observed which confirmed a good correlation between in vitro and in vivo data.


2018 ◽  
Vol 107 (3) ◽  
pp. 870-878 ◽  
Author(s):  
Mariane de Cássia Lima Dante ◽  
Livia Neves Borgheti-Cardoso ◽  
Marcia Carvalho de Abreu Fantini ◽  
Fabíola Silva Garcia Praça ◽  
Wanessa Silva Garcia Medina ◽  
...  

Author(s):  
Yella Sirisha ◽  
Gopala Krishna Murthy T E ◽  
Avanapu Srinivasa Rao

 Objective: The present research work is an attempt to determine the effect of various diluents and superdisintegrants on drug release of eletriptan orodispersible tablets and designs an optimized formulation using 22 factorial design. Further, evaluate the tablets for various pre-compression and post-compression parameters.Methods: The drug excipient compatibility study was conducted by infrared spectroscopy, differential scanning colorimetry and X-ray diffraction studies were conducted to test the purity of the drug. The tablets were formulated by direct compression method using spray dried lactose, mannitol, microcrystalline cellulose, starch as diluents and crospovidone, croscarmellose sodium, and sodium starch glycolate as superdisintegrants. The powder formulations were evaluated for pre-compression parameters such as bulk density, tapped density, Carr’s Index, Hausner’s ratio, and angle of repose. The tablets were evaluated for post-compression parameters such as the hardness, thickness, friability, weight variation, and disintegrating time in the oral cavity, in vitro drug release kinetics studies, and accelerated stability studies. The formulations were optimized by 22 factorial design.Results: The drug and excipients were compatible, and no interaction was found. The drug was pure, and all the pre-compression parameters were within Indian Pharmacopoeial Limits. Post-compression parameters were also within limits. The disintegration time was found to be 27 s for the formulation F29 containing Croscarmellose sodium (5%) and Mannitol as diluent, and in vitro drug release was found to be 99.67% in 30 min and follows first-order kinetics. This was also the optimized formulation by 22 factorial design with a p=0.013.Conclusion: The orodispersible tablets of eletriptan were successfully formulated, and the optimized formulation was determined that can be used in the treatment of migraine.


Author(s):  
Sindhoor S M ◽  
Sneh Priya ◽  
Amala Maxwell

Objective: The aim of the present study was to formulate and evaluate the novel in situ gel of lafutidine for gastroretentive drug deliveryMethods: A gastroretentive in situ gel of lafutidine was formulated by pH-triggered ionic gelation method using different concentrations of gelling polymer such as sodium alginate, gellan gum, and xanthum gum. Prepared formulations were evaluated for viscosity, density, buoyancy lag time and buoyancy duration, and drug content. In vitro drug release studies of all formulations were also performed. In vivo fluorescence imaging study was conducted for optimized formulation and compared with control.Results: The concentration of gelling agents and release retardant polymers significantly affected viscosity, floating behavior, and in vitro drug release of the formulations. The pH and drug content were found in the range of 6.72–7.20 and 88.74–95.33%, respectively. Floating lag time was <2 min; duration of floating was more than 12 h. Minimum and maximum in vitro drug release were found to be for formulation F9 (51.74%) and F1 (82.76%), respectively, at the end of 12 h. The drug was released from the all the formulations in a sustained manner. In vivo studies confirmed the gastroretention of the formulation in mice stomach for 8 h. Stability studies indicated that the there was no significant change in the visual appearance, floating behavior, and drug content.Conclusion: The gastroretentive in situ gel system, prolonged the gastric residence time, thereby targeting site-specific drug release in the upper gastrointestinal tract.


2021 ◽  
pp. 194589242110391
Author(s):  
Changcheng You ◽  
Ling-Fang Tseng ◽  
Alexander Pappas ◽  
Danny Concagh ◽  
Yina Kuang

Background Intranasal corticosteroid sprays (INCSs) used to treat chronic rhinosinusitis are suboptimal due to limited penetration into the middle meatus, rapid clearance, and poor patient compliance. A bioresorbable drug matrix, developed with the XTreoTM drug delivery platform, may overcome the limitations of INCS by providing continuous dosing over several months. Objective To evaluate the in vitro drug release and in vivo pharmacokinetics of novel mometasone furoate (MF) matrices in a rabbit dorsal maxillary osteotomy model. Methods XTreoTM matrices were formulated to consistently elute MF for up to 6 months. Matrices were surgically placed bilaterally into the maxillary sinuses of New Zealand White (NZW) rabbits. Tissue and plasma MF concentrations were measured to assess the in vivo drug delivery. The in vivo and in vitro drug release kinetics of the matrices were quantified and compared to those of rabbits receiving daily Nasonex® MF nasal sprays. Results XTreoTM matrices self-expanded upon deployment to conform to the irregular geometry of the maxillary sinus cavities in the NZW rabbits. Sustained release of MF was demonstrated in vitro and in vivo for 2 MF matrices of distinct release durations and an in vitro–in vivo correlation was established. Therapeutic levels of MF in local tissues were measured throughout the intended dosing durations. In contrast to the variable peaks and troughs of daily nasal sprays, sustained dosing via a single administration of MF matrices was confirmed by quantifiable plasma MF concentrations over the intended dosing duration. Conclusion The XTreoTM MF matrices provided targeted and efficient dosing to local sinus tissues that was superior to INCS. Sustained drug release was confirmed both in vitro and in vivo. The novel XTreoTM technology may provide precisely tuned, long-lasting drug delivery to sinus tissues with a single treatment.


Sign in / Sign up

Export Citation Format

Share Document