glyceryl monooleate
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 10)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 14 (8) ◽  
pp. 786
Author(s):  
Mohamed Nasr ◽  
Saud Almawash ◽  
Ahmed Al Saqr ◽  
Alaa Y. Bazeed ◽  
Sameh Saber ◽  
...  

In this study, gliclazide-loaded cubosomal particles were prepared for improving the oral bioavailability and antidiabetic activity of gliclazide. Four formulations of gliclazide-loaded cubosomal nanoparticles dispersions were prepared by the emulsification method using four different concentrations of glyceryl monooleate (GMO) and poloxamer 407 (P407) as the stabilizer. The prepared formulations were in vitro and in vivo evaluated. In vitro, the prepared gliclazide-loaded cubosomal dispersions exhibited disaggregated regular poly-angular particles with a nanometer-sized particle range from 220.60 ± 1.39 to 234.00 ± 2.90 nm and entrapped 73.84 ± 3.03 to 88.81 ± 0.94 of gliclazide. In vitro gliclazide release from cubosomal nanoparticles revealed an initially higher drug release during the first 2 h in acidic pH medium; subsequently, a comparatively higher drug release in alkaline medium relative to gliclazide suspension was observed. An in vivo absorption study in rats revealed a two-fold increase in the bioavailability of gliclazide cubosomal formulation relative to plain gliclazide suspension. Moreover, the study of in vivo hypoglycemic activity indicated that a higher percentage reduction in glucose level was observed after the administration of gliclazide cubosomal nanoparticles to rats. In conclusion, gliclazide-loaded cubosomal nanoparticles could be a promising delivery system for improving the oral absorption and antidiabetic activity of gliclazide.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2607
Author(s):  
Aleksander Forys ◽  
Maria Chountoulesi ◽  
Barbara Mendrek ◽  
Tomasz Konieczny ◽  
Theodore Sentoukas ◽  
...  

The investigation of properties of amphiphilic block copolymers as stabilizers for non-lamellar lyotropic liquid crystalline nanoparticles represents a fundamental issue for the formation, stability and upgraded functionality of these nanosystems. The aim of this work is to use amphiphilic block copolymers, not studied before, as stabilizers of glyceryl monooleate 1-(cis-9-octadecenoyl)-rac-glycerol (GMO) colloidal dispersions. Nanosystems were prepared with the use of poly(ethylene oxide)-b-poly(lactic acid) (PEO-b-PLA) and poly(ethylene oxide)-b-poly(5-methyl-5-ethyloxycarbonyl-1,3-dioxan-2-one) (PEO-b-PMEC) block copolymers. Different GMO:polymer molar ratios lead to formulation of nanoparticles with different size and internal organization, depending on the type of hydrophobic block. Resveratrol was loaded into the nanosystems as a model hydrophobic drug. The physicochemical and morphological characteristics of the prepared nanosystems were investigated by dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), fast Fourier transform (FFT) analysis and X-ray diffraction (XRD). The studies allowed the description of the lyotropic liquid crystalline nanoparticles and evaluation of impact of copolymer composition on these nanosystems. The structures formed in GMO:block copolymer colloidal dispersions were compared with those discussed previously. The investigations broaden the toolbox of polymeric stabilizers for the development of this type of hybrid polymer/lipid nanostructures.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jakub Jagielski ◽  
Łucja Przysiecka ◽  
Dorota Flak ◽  
Magdalena Diak ◽  
Zuzanna Pietralik-Molińska ◽  
...  

Abstract Background Lipid liquid crystalline nanoparticles (LLCNPs) emerge as a suitable system for drug and contrast agent delivery. In this regard due to their unique properties, they offer a solubility of a variety of active pharmaceutics with different polarities increasing their stability and the possibility of controlled delivery. Nevertheless, the most crucial aspect underlying the application of LLCNPs for drug or contrast agent delivery is the unequivocal assessment of their biocompatibility, including cytotoxicity, genotoxicity, and related aspects. Although studies regarding the cytotoxicity of LLCNPs prepared from various lipids and surfactants were conducted, the actual mechanism and its impact on the cells (both cancer and normal) are not entirely comprehended. Therefore, in this study, LLCNPs colloidal formulations were prepared from two most popular structure-forming lipids, i.e., glyceryl monooleate (GMO) and phytantriol (PHT) with different lipid content of 2 and 20 w/w%, and the surfactant Pluronic F-127 using the top-down approach for further comparison of their properties. Prepared formulations were subjected to physicochemical characterization and followed with in-depth biological characterization, which included cyto- and genotoxicity towards cervical cancer cells (HeLa) and human fibroblast cells (MSU 1.1), the evaluation of cytoskeleton integrity, intracellular reactive oxygen species (ROS) generation upon treatment with prepared LLCNPs and finally the identification of internalization pathways. Results Results denote the higher cytotoxicity of PHT-based nanoparticles on both cell lines on monolayers as well as cellular spheroids, what is in accordance with evaluation of ROS activity level and cytoskeleton integrity. Detected level of ROS in cells upon the treatment with LLCNPs indicates their insignificant contribution to the cellular redox balance for most concentrations, however distinct for GMO- and PHT-based LLCNPs. The disintegration of cytoskeleton after administration of LLCNPs implies the relation between LLCNPs and F-actin filaments. Additionally, the expression of four genes involved in DNA damage and important metabolic processes was analyzed, indicating concentration–dependent differences between PHT- and GMO-based LLCNPs. Conclusions Overall, GMO-based LLCNPs emerge as potentially more viable candidates for drug delivery systems as their impact on cells is not as deleterious as PHT-based as well as they were efficiently internalized by cell monolayers and 3D spheroids. Graphic Abstract


2021 ◽  
Vol 343 ◽  
pp. 128416 ◽  
Author(s):  
Yue Wei ◽  
Yanping Xie ◽  
Zhixiang Cai ◽  
Yalong Guo ◽  
Hongbin Zhang

2021 ◽  
pp. 111992
Author(s):  
A.M. Api ◽  
D. Belsito ◽  
S. Biserta ◽  
D. Botelho ◽  
M. Bruze ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1017
Author(s):  
Agnese Gagliardi ◽  
Donato Cosco ◽  
Betty P. Udongo ◽  
Luciana Dini ◽  
Giuseppe Viglietto ◽  
...  

Glyceryl monooleate (GMO) is one of the most popular amphiphilic lipids, which, in the presence of different amounts of water and a proper amount of stabilizer, can promote the development of well defined, thermodynamically stable nanostructures, called lyotropic liquid crystal dispersions. The aim of this study is based on the design, characterization, and evaluation of the cytotoxicity of lyotropic liquid crystal nanostructures containing a model anticancer drug such as doxorubicin hydrochloride. The drug is efficiently retained by the GMO nanosystems by a remote loading approach. The nanostructures prepared with different non-ionic surfactants (poloxamers and polysorbates) are characterized by different physico-chemical features as a function of several parameters, i.e., serum stability, temperature, and different pH values, as well as the amount of cryoprotectants used to obtain suitable freeze-dried systems. The nanostructures prepared with poloxamer 407 used as a stabilizer show an increased toxicity of the entrapped drug on breast cancer cell lines (MCF-7 and MDA-MB-231) due to their ability to sensitize multidrug-resistant (MDR) tumor cells through the inhibition of specific drug efflux transporters. Moreover, the interaction between the nanostructures and the cells occurs after just a few hours, evidencing a huge cellular uptake of the nanosystems.


Sign in / Sign up

Export Citation Format

Share Document