A VALIDATED SPECTROFLUORIMETRIC METHOD FOR DETERMINATION OF POLYSORBATE 80 FROM PHARMACEUTICAL FORMULATION

INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (05) ◽  
pp. 24-29
Author(s):  
V. K Parmar ◽  
◽  
H. R. Brahmbhatt

A simple, rapid and sensitive spectrofluorimetric method has been developed and validated for the determination of the non-ionic surfactant, polysorbate 80, from pharmaceutical formulation. The proposed method is based on a fluorescence enhancement of the probe (eosin B dye) with addition of polysorbate 80. The eosin B concentration was optimised and found to be 4μg/mL. The fluorescence intensity was measured in a diluting solvent, citric acid buffer (pH 4.0) using excitation and emission wavelengths, 545 nm and 580 nm, respectively. The fluorescence intensity was found to be liner over a concentration range of 16-80 μg/mL of polysorbate 80 with a high correlation coefficient (r = 0.9990). The developed method was validated in terms of linearity, precision, accuracy, limit of detection and limit of quantification and specificity. The limit of detection and limit of quantification for polysorbate 80 were found to be 2 μg/mL and 16 μg/mL, respectively. The developed method was successfully applied for the determination of polysorbate 80 in ophthalmic solution and micro emulsion.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Hany W. Darwish ◽  
Ahmed H. Bakheit ◽  
Ali Saber Abdelhameed ◽  
Amer S. AlKhairallah

An impressively simple and precise spectrofluorimetric procedure was established and validated for ponatinib (PTB) quantitation in biological fluids such as human plasma and human urine. This method depends on examining the fluorescence characteristics of PTB in a micellar system of Cremophor RH 40 (Cr RH 40). Cr RH 40 enhanced the intrinsic fluorescence of PTB distinctly in aqueous water. The fluorescence spectra of PTB was recorded at 457 nm following its excitation at 305 nm. Maximum fluorescence intensity was attained by addition of 0.7 mL of Cr RH 40 and one mL of phosphate buffer to PTB aliquots and then dilution with distilled water. There is a linear relationship between the fluorescence intensity of PTB and its concentration over the range 5–120 ngmL−1, with limit of detection and limit of quantification equal to 0.905 ngmL−1and 2.742 ngmL−1, respectively. The accuracy and the precisions of the proposed method were checked and gave adequate results. The adopted method was applied with a great success for PTB quantitation in different biological matrices (spiked human plasma and urine) giving high recovery values.


2020 ◽  
Vol 58 (5) ◽  
pp. 411-417
Author(s):  
Maimana A Magdy ◽  
Rehab M Abdelfatah

Abstract A binary mixture of Silymarin (SR) and Vitamin E (VE) acetate, of an antioxidant and a hepatoprotective effect, has been analyzed using a sensitive, selective and economic high performance thin layer chromatographic (HPTLC) method in their pure forms, pharmaceutical formulation and spiked human plasma. SR and VE were separated on 60F254 silica gel plates using hexane:acetone:formic acid (7:3:0.15, v/v/v) as a developing system with UV detection at 215 nm. The method was evaluated for linearity, accuracy, precision, selectivity, limit of detection (LOD) and limit of quantification (LOQ). SR and VE were detected in the linear range of 0.2–2.5 and 0.2–4.5 μg/band, respectively. Method validation was done as per ICH guidelines and acceptable results of accuracy of 99.86 ± 1.190 and 100.22 ± 1.609 for SR and VE, respectively were obtained. The method has been successfully applied for determination of the studied drugs in their pharmaceutical formulation without any interference from excipients, and in spiked plasma samples. Results obtained by the developed HPTLC-densitometric method were statistically compared to those obtained by the reported HPLC methods and no significant difference was found between them.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Garima Balwani ◽  
Emil Joseph ◽  
Satish Reddi ◽  
Vibhu Nagpal ◽  
Ranendra N. Saha

A new, simple, rapid, sensitive, accurate, and affordable spectrofluorimetric method was developed and validated for the estimation of ganciclovir in bulk as well as in marketed formulations. The method was based on measuring the native fluorescence of ganciclovir in 0.2 M hydrochloric acid buffer of pH 1.2 at 374 nm after excitation at 257 nm. The calibration graph was found to be rectilinear in the concentration range of 0.25–2.00 μg mL−1. The limit of quantification and limit of detection were found to be 0.029 μg mL−1and 0.010μg mL−1, respectively. The method was fully validated for various parameters according to ICH guidelines. The results demonstrated that the procedure is accurate, precise, and reproducible (relative standard deviation <2%) and can be successfully applied for the determination of ganciclovir in its commercial capsules with average percentage recovery of 101.31 ± 0.90.


2018 ◽  
Vol 9 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Mohammed Al Bratty ◽  
Safaa Fathy Saleh ◽  
Hassan Ahmad Alhazmi ◽  
Sadique Akhtar Javed ◽  
Adel Mohammed Ahmed ◽  
...  

The main purpose of the present study was to develop and validate a high performance thin layer chromatographic (HPTLC) method for quantitative determination of an antiviral agent, zanamivir in pure drug and diskhaler powder formulation. Chromatography was performed on aluminum TLC plates pre-coated with silica gel 60F254, employing a mixture of chloroform:methanol:ammonia (9.5:3.2:0.2,v:v:v) as mobile phase. The TLC scanner was operated in the absorbance mode at a wavelength of 230 nm for evaluation of chromatograms. The system has given well resolved peak of zanamivir (Rf = 0.56). The linearity of the method was established in the range of 20-300 ng/spot; correlation coefficient (r) was 0.9995. The low values of limit of detection and limit of quantification (12.4 and 37.5 ng/spot, respectively) have demonstrated the sensitivity of the developed method. The reported method was precise in both intra-day as well as inter-day analysis; % RSD of peak area was found to be less than 2%, and has an accuracy within 100 ± 2%. The developed method has a potential to quantify zanamivir from its diskhaler formulation without any interference from other components. The applicability of the method was demonstrated by excellent recovery of analyte (99.8%) from diskhaler formulation. The current analytical method can be applied for routine analysis of zanamivir in pure form and pharmaceutical formulation in quality control laboratories. 


2019 ◽  
Vol 11 (12) ◽  
pp. 1273-1278
Author(s):  
Md Ali Mujtaba

A simple, specific, economic, accurate, and reproducible UV-spectrophotometric methods were developed and validated for the estimation of berberine (BRC) in bulk and pharmaceutical formulation. The λmax of BRC in 0.1 N hydrochloric acid (pH 1.2), phosphate buffer (pH 6.8), and water was found to be 346 nm, 343 nm and 260 nm respectively. Beer's law was obeyed in the concentration range of 5–30 μg/ml (R2 = 0.9698) in water, 5–25 μg/ml (R2 = 0.9991) in 0.1 N HCl buffer (pH 1.2) and 5–35 μg/ml (R2 = 0.9935) in phosphate buffer (pH 6.8). These methods were tested, and validated for various parameters such as linearity, precision, accuracy, specificity, limit of detection (LOD), and limit of quantification (LOQ) according to ICH guidelines. The method showed good reproducibility and recovery with percent relative standard deviation less than 2%. Moreover, the accuracy and precision obtained implied that UV spectroscopy can be a cheap, reliable, and less time consuming alternative for chromatographic analysis. The proposed methods were successfully applied for the determination of BRC in pharmaceutical formulation. The BRC estimated from the formulation was found to be well within limits (±5% of the labelled content of the formulations). The proposed methods are highly sensitive, precise, accurate, and can be employed for the routine analysis of berberine in bulks as well as in the commercial formulations.


2021 ◽  
Vol 8 (8) ◽  
pp. 210329
Author(s):  
Heba Abdel-Aziz ◽  
M. M. Tolba ◽  
N. El-Enany ◽  
F. A. Aly ◽  
M. E. Fathy

Using two green and sensitive spectrofluorimetric methods, we quantified two cephalosporins, cefepime (CFM) and cefazolin (CFZ), in raw and pharmaceutical formulations. The first method is based on the reaction between CFM and fluorescamine (borate buffer, pH 8), which yields a highly fluorescent product. After excitation at 384 nm, the fluorescent product emits light at 484 nm. At concentration ranges from 12.0 to 120.0 ng ml −1 , the relative fluorescence intensity/concentration curve was linear with a limit of quantification (LOQ) of 2.46 ng ml −1 . The second method relied on measuring the CFZ quenching action on acriflavine fluorescence through formation of an ion-associate complex using Britton–Robinson buffer at pH 8. We measured acriflavine fluorescence at 505 nm after excitation at 265 nm. The decrease in acriflavine fluorescence intensity was CFZ concentration-dependent. Using this method, we quantified CFZ in concentrations ranging from 1 to 10 µg ml −1 with a LOQ of 0.48 µg ml −1 . We studied and optimized the factors influencing reaction product formation. Moreover, we adapted our methods to the investigation of the mentioned drugs in raw and pharmaceutical formulations with greatly satisfying results. We statistically validated our methods according to International Council on Harmonisation Guidelines. The obtained results were consistent with those obtained with the official high-performance liquid chromatography methods.


2021 ◽  
Vol 18 ◽  
pp. 30-39
Author(s):  
Saad Antakli ◽  
Leon Nejem ◽  
Ahmad Kullah

Simple and rapid spectrophotometric method for the quantitative analysis of Pitavastatin calcium (PTV) in raw material and tablets pharmaceutical formulation has been described. The method is based on the formation of yellow ion-pair complex between Pitavastatin calcium and Bromocresol purple (BCP) in chloroform medium. Different parameters affecting the reaction such as: effect of solvents, stability, reagent concentration, correlation ratio, etc. were optimized. The formed complex was quantified spectrophotometrically at absorption maximum 405 nm. Linearity range was 2.20 - 35.23 µg/mL, regression analysis showed a good correlation coefficient R2 = 0.9991. The limit of detection (LOD) and limit of quantification (LOQ) were to be 0.367 µg/mL and 1.112 µg/mL respectively. The average percent recovery was found to be (100.62 – 101.14) % for Pitavastatin Calcium. This study was applied on Syrian pharmaceutical trademark: (PAVACRIUM 4 & Londalop). The method was successfully applied for the determination of Pitavastatin calcium in tablets pharmaceutical formulation. The proposed method is simple, direct, sensitive and do not require any extraction process. Thus, this method could be readily applicable for the quality control and routine analysis.


2019 ◽  
Vol 25 (3) ◽  
pp. 262-267
Author(s):  
Ahad Bavili Tabrizi ◽  
Faezeh Yousefzadeh

Background: The present work is aimed to study the effect of different parameters on the fluorescence intensity of atenolol (ATE) and carvedilol (CAR) and optimization by response surface methodology (RSM) to provide a simple analytical method for their quantification in pharmaceutical formulations. Methods: Various parameters affecting the fluorescence intensity, i.e., sodium dodecyl sulfate (SDS) concentration, pH, volume fraction of solvents were optimized using RSM. Then, the optimized parameters were applied to the validation of a method for fluorimetric determination of β-blockers in their pharmaceutical preparations. Results: It is obtained that under the optimum conditions for determination of ATE, the method provided a linear range between 130 to 750 ng/mL with a coefficient of correlation (r) of 0.9996. Also, the limit of detection and limit of quantification (LOD and LOQ) were 40 ng/mL and 130 ng/mL, respectively. Moreover, it is observed that, the linearity of method for determination of CAR was between 0.37 to 4.0 ng/mL and LOD and LOQ of method were 0.11 ng/mL and 0.37 ng/mL, respectively. Conclusion: An accurate, sensitive and reliable spectrofluorimetric method was developed anf successfully used to determine the (ATE) and carvedilol (CAR) in their pharmaceutical preparations.


2020 ◽  
Vol 32 (12) ◽  
pp. 3191-3196
Author(s):  
Intizam Ahmadov

In this study, a new method was developed for the spectrophotometric determination of zirconium by the procedure of dispersive liquid-liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO). o-Nitrobenzene-azopyrocatechol (o-NBAP) and non-ionic surfactant (OP-10) were used in the complex formation. At the first stage, a separation and solidification processes were carried out, after which the solidified samples were examined by spectrophotometric method. The effect of various parameters viz. pH effect, ion resistance, ligand effect, volume and type of extraction and dispersion solution, extraction time and temperature effect were studied. The results of the experiment were optimized with design programs. The calibration curve was linear ranging from 0.5 to70 μg L-1, with a correlation coefficient of 0.998. The limit of detection (LOD) is 0.12 μg L-1, the limit of quantification (LOQ) is 0.40 μg L-1 and the relative standard deviation (RSD) at 60 μg L-1 is 1.6% (n=6). This method was also applied to determine zirconium in various water samples. The obtained reextraction amount was 98-110%.


2018 ◽  
Vol 6 (6) ◽  
pp. 7-14
Author(s):  
Abdalla Ahmed Elbashir ◽  
Shahd Moutasim Merghani

A new, simple and sensitive spectrophotometric method is developed for the determination of ranitidine hydrochloride (RNH). The proposed method is based upon reaction of RNH with 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer of pH 8.0 producing an absorption maximum at 255 nm. All parameters required for the reaction conditions are investigated. Linearity is verified with a range of 2-16 μg/mL and is described by the regression equation y = 61129 x + 0.0354 with a correlation coefficient of 0.9998 (n = 7). The limit of detection (LOD) and the limit of quantification (LOQ) were calculated as per ICH guidelines and were found to be 0.2219 and 0.6724 μg/mL, respectively. The method was successfully applied for the determination of RNH in pharmaceutical formulation. Therefore, the method can be used for routine analysis of RNH in quality control laboratories.


Sign in / Sign up

Export Citation Format

Share Document