scholarly journals Micellar Enhanced Spectrofluorimetric Method for the Determination of Ponatinib in Human Plasma and Urine via Cremophor RH 40 as Sensing Agent

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Hany W. Darwish ◽  
Ahmed H. Bakheit ◽  
Ali Saber Abdelhameed ◽  
Amer S. AlKhairallah

An impressively simple and precise spectrofluorimetric procedure was established and validated for ponatinib (PTB) quantitation in biological fluids such as human plasma and human urine. This method depends on examining the fluorescence characteristics of PTB in a micellar system of Cremophor RH 40 (Cr RH 40). Cr RH 40 enhanced the intrinsic fluorescence of PTB distinctly in aqueous water. The fluorescence spectra of PTB was recorded at 457 nm following its excitation at 305 nm. Maximum fluorescence intensity was attained by addition of 0.7 mL of Cr RH 40 and one mL of phosphate buffer to PTB aliquots and then dilution with distilled water. There is a linear relationship between the fluorescence intensity of PTB and its concentration over the range 5–120 ngmL−1, with limit of detection and limit of quantification equal to 0.905 ngmL−1and 2.742 ngmL−1, respectively. The accuracy and the precisions of the proposed method were checked and gave adequate results. The adopted method was applied with a great success for PTB quantitation in different biological matrices (spiked human plasma and urine) giving high recovery values.

INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (05) ◽  
pp. 24-29
Author(s):  
V. K Parmar ◽  
◽  
H. R. Brahmbhatt

A simple, rapid and sensitive spectrofluorimetric method has been developed and validated for the determination of the non-ionic surfactant, polysorbate 80, from pharmaceutical formulation. The proposed method is based on a fluorescence enhancement of the probe (eosin B dye) with addition of polysorbate 80. The eosin B concentration was optimised and found to be 4μg/mL. The fluorescence intensity was measured in a diluting solvent, citric acid buffer (pH 4.0) using excitation and emission wavelengths, 545 nm and 580 nm, respectively. The fluorescence intensity was found to be liner over a concentration range of 16-80 μg/mL of polysorbate 80 with a high correlation coefficient (r = 0.9990). The developed method was validated in terms of linearity, precision, accuracy, limit of detection and limit of quantification and specificity. The limit of detection and limit of quantification for polysorbate 80 were found to be 2 μg/mL and 16 μg/mL, respectively. The developed method was successfully applied for the determination of polysorbate 80 in ophthalmic solution and micro emulsion.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
S. N. Prashanth ◽  
Shankara S. Kalanur ◽  
Nagappa L. Teradal ◽  
J. Seetharamappa

The electrochemical behavior of isothipendyl hydrochloride (IPH) was investigated at bare and multiwalled-carbon-nanotube modified glassy carbon electrode (MWCNT-GCE). IPH (55 μM) showed two oxidation peaks in Britton-Robinson (BR) buffer of pH 7.0. The oxidation process of IPH was observed to be irreversible over the pH range of 2.5–9.0. The influence of pH, scan rate, and concentration of the drug on anodic peak was studied. A differential pulse voltammetric method with good precision and accuracy was developed for the determination of IPH in pure and biological fluids. The peak current was found to be linearly dependent on the concentration of IPH in the range of 1.25–55 μM. The values of limit of detection and limit of quantification were noticed to be 0.284 and 0.949 μM, respectively.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (06) ◽  
pp. 60-63
Author(s):  
Sadhana Rajput ◽  
◽  
Samir Patel ◽  

A new, specific, selective, simple, rapid and inexpensive spectrofluorophotometric method has been developed for the determination of tadalafil in spiked human plasma. The fluorescence spectrum of tadalafil in 0.1M methanolic sulphuric acid showed excitation wavelength at 315 nm and emission wave-length at 332 nm. The method for tadalafil was found to be linear over the concentration range of 10-50 ng/mL with a correlation coefficient of 0.9991. Limit of detection and limit of quantification were found to be 0.235 ng/mL and 0.701 ng/mL, respectively. The method was validated and found to be suitable for the estimation of tadalafil from human plasma. Satisfactory recovery of tadalafil from the human plasma suggests no interference of any debris present into human plasma. This method can be used to deter-mine plasma tadalafil concentration in drug monitoring or pharmacokinetic investigation.


2020 ◽  
Vol 58 (5) ◽  
pp. 411-417
Author(s):  
Maimana A Magdy ◽  
Rehab M Abdelfatah

Abstract A binary mixture of Silymarin (SR) and Vitamin E (VE) acetate, of an antioxidant and a hepatoprotective effect, has been analyzed using a sensitive, selective and economic high performance thin layer chromatographic (HPTLC) method in their pure forms, pharmaceutical formulation and spiked human plasma. SR and VE were separated on 60F254 silica gel plates using hexane:acetone:formic acid (7:3:0.15, v/v/v) as a developing system with UV detection at 215 nm. The method was evaluated for linearity, accuracy, precision, selectivity, limit of detection (LOD) and limit of quantification (LOQ). SR and VE were detected in the linear range of 0.2–2.5 and 0.2–4.5 μg/band, respectively. Method validation was done as per ICH guidelines and acceptable results of accuracy of 99.86 ± 1.190 and 100.22 ± 1.609 for SR and VE, respectively were obtained. The method has been successfully applied for determination of the studied drugs in their pharmaceutical formulation without any interference from excipients, and in spiked plasma samples. Results obtained by the developed HPTLC-densitometric method were statistically compared to those obtained by the reported HPLC methods and no significant difference was found between them.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5799
Author(s):  
Olga Maliszewska ◽  
Natalia Treder ◽  
IIona Olędzka ◽  
Piotr Kowalski ◽  
Natalia Miękus ◽  
...  

A new approach for the sensitive, robust and rapid determination of idarubicin (IDA) in human plasma and urine samples based on liquid chromatography with fluorescence detection (LC-FL) was developed. Satisfactory chromatographic separation of the analyte after solid-phase extraction (SPE) was performed on a Discovery HS C18 analytical column using a mixture of acetonitrile and 0.1% formic acid in water as the mobile phase in isocratic mode. IDA and daunorubicin hydrochloride used as an internal standard (I.S.) were monitored at the excitation and emission wavelengths of 487 and 547 nm, respectively. The method was validated according to the FDA and ICH guidelines. The linearity was confirmed in the range of 0.1–50 ng/mL and 0.25–200 ng/mL, while the limit of detection (LOD) was 0.05 and 0.125 ng/mL in plasma and urine samples, respectively. The developed LC-FL method was successfully applied for drug determinations in human plasma and urine after oral administration of IDA at a dose of 10 mg to a patient with highly advanced alveolar rhabdomyosarcoma (RMA). Moreover, the potential exposure to IDA present in both fluids for healthcare workers and the caregivers of patients has been evaluated. The present LC-FL method can be a useful tool in pharmacokinetic and clinical investigations, in the monitoring of chemotherapy containing IDA, as well as for sensitive and reliable IDA quantitation in biological fluids.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1650
Author(s):  
Gustavo Richter Vaz ◽  
Adryana Clementino ◽  
Juliana Bidone ◽  
Marcos Antonio Villetti ◽  
Mariana Falkembach ◽  
...  

Biphasic oil/water nanoemulsions have been proposed as delivery systems for the intranasal administration of curcumin (CUR) and quercetin (QU), due to their high drug entrapment efficiency, the possibility of simultaneous drug administration and protection of the encapsulated compounds from degradation. To better understand the physicochemical and biological performance of the selected formulation simultaneously co-encapsulating CUR and QU, a stability test of the compound mixture was firstly carried out using X-ray powder diffraction and thermal analyses, such as differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA). The determination and quantification of the encapsulated active compounds were then carried out being an essential parameter for the development of innovative nanomedicines. Thus, a new HPLC–UV/Vis method for the simultaneous determination of CUR and QU in the nanoemulsions was developed and validated. The X-ray diffraction analyses demonstrated that no interaction between the mixture of active ingredients, if any, is strong enough to take place in the solid state. Moreover, the thermal analysis demonstrated that the CUR and QU are stable in the nanoemulsion production temperature range. The proposed analytical method for the simultaneous quantification of the two actives was selective and linear for both compounds in the range of 0.5–12.5 µg/mL (R2 > 0.9997), precise (RSD below 3%), robust and accurate (recovery 100 ± 5 %). The method was validated in accordance with ICH Q2 R1 “Validation of Analytical Procedures” and CDER-FDA “Validation of chromatographic methods” guideline. Furthermore, the low limit of detection (LOD 0.005 µg/mL for CUR and 0.14 µg/mL for QU) and the low limit of quantification (LOQ 0.017 µg/mL for CUR and 0.48 µg/mL for QU) of the method were suitable for the application to drug release and permeation studies planned for the development of the nanoemulsions. The method was then applied for the determination of nanoemulsions CUR and QU encapsulation efficiencies (> 99%), as well as for the stability studies of the two compounds in simulated biological fluids over time. The proposed method represents, to our knowledge, the only method for the simultaneous quantification of CUR and QU in nanoemulsions.


2021 ◽  
Vol 58 (6) ◽  
pp. 427-434
Author(s):  
Muhammad Naeem Khan ◽  
Irum ◽  
Saba Gul ◽  
Muslima ◽  
Muhammad Mursaleen

Abstract A rapid, simple and economical spectrofluorimetric method for the determination of diclofenac potassium in pure form, in pharmaceutical preparations and in human plasma has been developed. The method is based on the enhancement of the fluorescence signal of diclofenac potassium by the addition of sodium dodecyl sulphate in McIvaine buffer with a pH of 5. Different experimental conditions such as buffer type, pH, type and concentration of surfactants were investigated. The fluorescence intensity of the solution was recorded at 361 nm after excitation at 243 nm. The method shows linearity in the concentration range of 0.2 μg mL–1–10 μg mL–1 with a good correlation coefficient of 0.997. The relative standard deviation value was 3.62 (n = 7). The limit of detection and limit of quantification were calculated to be 2.84 × 10–3 μg mL–1 and 9.47 × 10–3 μg mL-1, respectively. The effect of excipients and co-administrated drugs was investigated and no interference was observed. The method was successfully applied for the determination of diclofenac potassium in pure form, in pharmaceutical products and in human plasma. The percentage recoveries obtained ranged from 100.25% to 102.16% for pure form and 97.50% to 102.00% for pharmaceutical products and from 98.50% to 101.67% for human plasma.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Garima Balwani ◽  
Emil Joseph ◽  
Satish Reddi ◽  
Vibhu Nagpal ◽  
Ranendra N. Saha

A new, simple, rapid, sensitive, accurate, and affordable spectrofluorimetric method was developed and validated for the estimation of ganciclovir in bulk as well as in marketed formulations. The method was based on measuring the native fluorescence of ganciclovir in 0.2 M hydrochloric acid buffer of pH 1.2 at 374 nm after excitation at 257 nm. The calibration graph was found to be rectilinear in the concentration range of 0.25–2.00 μg mL−1. The limit of quantification and limit of detection were found to be 0.029 μg mL−1and 0.010μg mL−1, respectively. The method was fully validated for various parameters according to ICH guidelines. The results demonstrated that the procedure is accurate, precise, and reproducible (relative standard deviation <2%) and can be successfully applied for the determination of ganciclovir in its commercial capsules with average percentage recovery of 101.31 ± 0.90.


2018 ◽  
Vol 10 (31) ◽  
pp. 3851-3858 ◽  
Author(s):  
Fatma Ahmed Aly ◽  
Nahed EL-Enany ◽  
Heba Elmansi ◽  
Amany Nabil

Carbinoxamine maleate (CBX), which is a common ingredient of cold and cough treatment preparations, is determined by a sensitive, simple and convenient spectrofluorimetric method in its pure form, pharmaceutical preparations and spiked human plasma.


Sign in / Sign up

Export Citation Format

Share Document