scholarly journals Impact of Climate Change on Paddy Water Storage During Storm Periods

2010 ◽  
Vol 52 (6) ◽  
pp. 27-37 ◽  
Author(s):  
Geun-Ae Park ◽  
Jong-Yoon Park ◽  
Hyung-Jin Shin ◽  
Min-Ji Park ◽  
Seong-Joon Kim
2020 ◽  
Vol 12 (15) ◽  
pp. 2408
Author(s):  
Delong Tao ◽  
Hongling Shi ◽  
Chunchun Gao ◽  
Jingang Zhan ◽  
Xiaoping Ke

Inland water storage change is a fundamental part of the hydrologic cycle, which reflects the impact of climate change and anthropogenic activities on water resources. In this study, we used multisatellite data (from satellite altimetry, remote sensing, and the Gravity Recovery and Climate Experiment (GRACE)) to investigate water storage changes in the Aral Sea and its endorheic basin. The water storage depletion rate in the Aral Sea from calibrated hypsometric curves (CHCs) created by satellite altimetry and image data agrees with the GRACE-derived result using the Slepian space domain inverse method (SSDIM). Compared with the combined filtering method (CFM) and mascon solutions, the SSDIM was shown to be an effective method of reducing the GRACE leakage error and restoring the signal attenuation in the Aral Sea. Moreover, we used the WaterGAP global hydrology model (WGHM) to qualitatively analyze the variations in the water storage components. The results show that the groundwater in the Aral Sea affects the change in the interannual water storage, especially during the extreme dry and humid periods. However, from the long-term water storage trend, the decrease in the surface storage dominates the shrinking of the Aral Sea. In addition, more details of the water storage change pattern in the endorheic basin were revealed by the enhanced GRACE solution. Our findings accentuate the severe water storage states of the Aral Sea endorheic basin under the impact of climate change and human interventions.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1221
Author(s):  
Mohammad Kamruzzaman ◽  
Syewoon Hwang ◽  
Soon-Kun Choi ◽  
Jaepil Cho ◽  
Inhong Song ◽  
...  

The authors wish to make the following corrections to this paper [...]


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 852 ◽  
Author(s):  
Mohammad Kamruzzaman ◽  
Syewoon Hwang ◽  
Soon-Kun Choi ◽  
Jaepil Cho ◽  
Inhong Song ◽  
...  

This research aims to assess the impact of climate change on water balance components in irrigated paddy cultivation. The APEX-Paddy model, which is the modified version of the APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystems, was used to evaluate the paddy water balance components considering future climate scenarios. The bias-corrected future projections of climate data from 29 GCMs (General Circulation Models) were applied to the APEX-Paddy model simulation. The study area (Jeonju station) forecasts generally show increasing patterns in rainfall, maximum temperature, and minimum temperature with a rate of up to 23%, 27%, and 45%, respectively. The hydrological simulations suggest over-proportional runoff–rainfall and under-proportional percolation and deep-percolation–rainfall relationships for the modeled climate scenarios. Climate change scenarios showed that the evapotranspiration amount was estimated to decrease compared to the baseline period (1976–2005). The evaporation was likely to increase by 0.12%, 2.21%, and 7.81% during the 2010s, 2040s, and 2070s, respectively under Representative Concentration Pathway (RCP)8.5, due to the increase in temperature. The change in evaporation was more pronounced in RCP8.5 than the RCP4.5 scenario. The transpiration is expected to reduce by 2.30% and 12.62% by the end of the century (the 2070s) under RCP4.5 and RCP8.5, respectively, due to increased CO2 concentration. The irrigation water demand is generally expected to increase over time in the future under both climate scenarios. Compared to the baseline, the most significant change is expected to increase in the 2040s by 3.21% under RCP8.5, while the lowest increase was found by 0.36% in 2010s under RCP4.5. The increment of irrigation does not show a significant difference; the rate of increase in the irrigation was found to be greater RCP8.5 than RCP4.5 except in the 2070s. The findings of this study can play a significant role as the basis for evaluating the vulnerability of rice production concerning water management against climate change.


2018 ◽  
Author(s):  
P A Lambat, A P Lambat V S Dongre and K J Cherian P A Lambat, A P Lambat V S Dongre and K J Cherian ◽  

Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Sign in / Sign up

Export Citation Format

Share Document