scholarly journals An Evaluation of MODIS Global Evapotranspiration Product as Satellite-Based Evapotranspiration Data for Supporting Precision Agriculture in West Papua - Indonesia

2021 ◽  
Vol 26 (1) ◽  
pp. 43
Author(s):  
Arif Faisol ◽  
Indarto Indarto ◽  
Elida Novita ◽  
Budiyono Budiyono

Precision Agriculture has been a significant issue since the middle of the 1980s. Evapotranspiration is one of the main parameters in precision agriculture to analyze real water needs in the agriculture area and managing water resources. Traditionally evapotranspiration estimates by directly measured methods, i.e., lysimeter, pan-evaporation, eddy covariance, Bowen ratio, soil water, and climate data analysis. These methods are expensive techniques with low spatial representativeness. The utilization of remote sensing technology is expected to be an alternative solution for providing evapotranspiration data with a cost-effective and high spatial representative. This research aims to evaluate the MODIS global evapotranspiration as satellite-based evapotranspiration in estimating evapotranspiration in West Papua. Four (4) statistical parameters, i.e., mean error (ME), root means square error (RMSE), relative bias (RB), and mean bias factor (MBF), are using for evaluation. The research showed that MODIS global evapotranspiration was overestimated in estimating evapotranspiration in West Papua. However, MODIS global evapotranspiration has an acceptable accuracy in estimating evapotranspiration in West Papua indicated by ME = 0.66 mm/day, RMSE = 0.94 mm/day, RB = 0.27, and MBF = 0.81. Therefore, MODIS global evapotranspiration can be used as an alternative solution for providing evapotranspiration data in West Papua with a cost-effective.

2017 ◽  
Vol 8 (2) ◽  
pp. 71-83 ◽  
Author(s):  
Jagalingam Pushparaj ◽  
Arkal Vittal Hegde

Determining the bathymetry of ocean is important for many aspects such as generating navigational charts, to study changes in the seafloor profile, sea level rise, and beach erosion. Traditionally, the bathymetry of ocean was determined by a hydrographic ship carrying an echo sounder instrument which was cost effective but time consuming and also often inaccessible in shallow water regions. The alternate solution to infer the bathymetry of ocean is remote sensing technology. The multispectral satellite platform such as Ikonos and WorldView images are commercially available, whereas the Landsat-8 imagery is freely accessible and therefore the Landsat-8 imagery is used. In this study, the first objective was to evolve a procedure to determine the bathymetry of ocean using the ratio transform algorithm. The second objective was to find the effectiveness of improving the spatial resolution of Landsat-8 imagery to estimate the bathymetry of ocean, and the results of both before and after improving the spatial resolution are compared. The statistical indices, root mean square error and mean absolute error, are computed between the algorithm results and the reference hydrographic chart values, and it was found that the improved spatial resolution of Landsat-8 imagery provided better estimation up to 10 m depth.


2004 ◽  
Author(s):  
D. K. Fisher ◽  
J. Hinton ◽  
M. H. Masters ◽  
C. Aasheim ◽  
E. S. Butler ◽  
...  

Author(s):  
Ing. Sócrates P. Muñoz Pérez ◽  
◽  
Kristell E. Bonilla Bances ◽  
Lesly J. Torres Zavaleta ◽  
Heber Ivan Mejía Cabrera ◽  
...  

Floods are one of the most devastating natural disasters that cause various losses by having an excess of rainfall in a short period of time, they cause a high flow in rivers, subsequently damaging crops and infrastructure. They also cause sedimentation of reservoirs and therefore limit the ability of existing dams to control floods. In other words, the purpose of assessing the risk of a flood is to identify the areas of a plan that are at risk of flooding based on the factors that are relevant to the risks of flooding. Therefore, it is important to create a flood map that is easy to read and quickly accessible. Maps provide a stronger and more direct impression of the spatial distribution of flood risk, like diagrams and verbal descriptions. On the other hand, the repeated taking of satellite images in periods of time of a few days makes it possible to know the evolution of the floods, helping the authorities to access the affected population, as well as to define safety areas. The current work aims to systematically evaluate the study of flood risk through remote sensing. A qualitative analysis was carried out through which 80 articles indexed between 2017 and 2021 were reviewed, distributed as follows: 49 articles are from Scopus, 10 from Ebsco and 21 from ScienceDirect; It is concluded that geographic information system together with remote sensing technology are the key tools for flood monitoring, as it is a very cost-effective way to reliably deliver the required data over a large area, as well as record data under extreme conditions to overcome the limitations of ground stations


Author(s):  
Mohammad Shohidul Islam ◽  
Sultana Easmin Siddika ◽  
S M Injamamul Haque Masum

Rainfall forecasting is very challenging task for the meteorologists. Over the last few decades, several models have been utilized, attempting the successful analysing and forecasting of rainfall. Recorded climate data can play an important role in this regard. Long-time duration of recorded data can be able to provide better advancement of rainfall forecasting. This paper presents the utilization of statistical techniques, particularly linear regression method for modelling the rainfall prediction over Bangladesh. The rainfall data for a period of 11 years was obtained from Bangladesh Meteorological department (BMD), Dhaka i.e. that was surface-based rain gauge rainfall which was acquired from 08 weather stations over Bangladesh for the years of 2001-2011. The monthly and yearly rainfall was determined. In order to assess the accuracy of it some statistical parameters such as average, meridian, correlation coefficients and standard deviation were determined for all stations. The model prediction of rainfall was compared with true rainfall which was collected from rain gauge of different stations and it was found that the model rainfall prediction has given good results.


1997 ◽  
Author(s):  
Tom Wilson ◽  
Rebecca Baugh ◽  
Ron Contillo ◽  
Tom Wilson ◽  
Rebecca Baugh ◽  
...  

1995 ◽  
Vol 32 (2) ◽  
pp. 77-83
Author(s):  
Y. Yüksel ◽  
D. Maktav ◽  
S. Kapdasli

Submarine pipelines must be designed to resist wave and current induced hydrodynamic forces especially in and near the surf zone. They are buried as protection against forces in the surf zone, however this procedure is not always feasible particularly on a movable sea bed. For this reason the characteristics of the sediment transport on the construction site of beaches should be investigated. In this investigation, the application of the remote sensing method is introduced in order to determine and observe the coastal morphology, so that submarine pipelines may be protected against undesirable seabed movement.


Sign in / Sign up

Export Citation Format

Share Document