scholarly journals Estimation of bathymetry along the coast of Mangaluru using Landsat-8 imagery

2017 ◽  
Vol 8 (2) ◽  
pp. 71-83 ◽  
Author(s):  
Jagalingam Pushparaj ◽  
Arkal Vittal Hegde

Determining the bathymetry of ocean is important for many aspects such as generating navigational charts, to study changes in the seafloor profile, sea level rise, and beach erosion. Traditionally, the bathymetry of ocean was determined by a hydrographic ship carrying an echo sounder instrument which was cost effective but time consuming and also often inaccessible in shallow water regions. The alternate solution to infer the bathymetry of ocean is remote sensing technology. The multispectral satellite platform such as Ikonos and WorldView images are commercially available, whereas the Landsat-8 imagery is freely accessible and therefore the Landsat-8 imagery is used. In this study, the first objective was to evolve a procedure to determine the bathymetry of ocean using the ratio transform algorithm. The second objective was to find the effectiveness of improving the spatial resolution of Landsat-8 imagery to estimate the bathymetry of ocean, and the results of both before and after improving the spatial resolution are compared. The statistical indices, root mean square error and mean absolute error, are computed between the algorithm results and the reference hydrographic chart values, and it was found that the improved spatial resolution of Landsat-8 imagery provided better estimation up to 10 m depth.

2017 ◽  
Vol 31 (1) ◽  
pp. 65
Author(s):  
Shafira Himayah ◽  
Hartono Hartono ◽  
Projo Danoedoro

Penginderaan jauh memiliki keunggulan dalam hal resolusi temporal yang dapat dimanfaatkan untuk meneliti perubahan suatu obyek dalam waktu yang berbeda. Hutan Gunung Kelud mengalami perubahan setelah erupsi tahun 2014. Perubahan tersebut dapat dianalisis dengan memanfaatkan teknologi penginderaan jauh melalui citra multitemporal. Penelitian ini bertujuan untuk mengkaji kemampuan citra Landsat 8 multitemporal dan Forest Canopy Density (FCD) untuk perubahan kerapatan kanopi di Hutan Lindung Gunung Kelud sebelum dan sesudah erupsi tahun 2014.Citra penginderaan jauh yang digunakan adalah citra Landsat 8 perekaman 26 Juni 2013 dan 4 September 2015. Metode yang digunakan adalah pemodelan FCD yang menghasilkan kerapatan kanopi per piksel. Hasil pemodelan FCD kemudian digunakan untuk menganalisis perubahan kerapatan kanopi setelah erupsi. Berdasarkan penelitan ini didapatkan hasil bahwa citra Landsat 8 dapat dipergunakan untuk mengetahui kerapatan kanopi Hutan Lindung Gunung Kelud sebelum dan setelah erupsi dengan masing-masing akurasi sebesar 83,73% dan 81,14%. Terjadi perubahan luas kerapatan kanopi setelah erupsi, dimana terdapat 8833,95 Ha hutan yang mengalami penurunan kerapatan kanopi, sedangkan hutan dengan kerapatan kanopi yang tetap adalah seluas 2149,38 Ha, dan hutan yang mengalami peningkatan kerapatan kanopi adalah seluas 1643,31 Ha. Remote sensing has an advantage in terms of temporal resolution that can be exploited to examine the changes of an object in different times. Gunung Kelud Forest is changing after the eruption in 2014. The changes can be analyzed by utilizing remote sensing technology through multitemporal imagery. This study aims to examine the capabilities of Landsat 8 multitemporal and Forest Canopy Density (FCD) images for changes in canopy density in Kelud Protection Forest before and after the eruption in 2014. Remote sensing imagery used is Landsat 8 image recording June 26, 2013, and September 4, 2015, The method used is FCD modeling that produces a density of the canopy per pixel. FCD modeling results are then used to analyze changes in density of the canopy after the eruption. Based on this research, it can be concluded that Landsat 8 image can be used to determine the density of canopy of Kelud Protection Forest before and after eruption with 83.73% and 81.14% accuracy respectively. There was a change in the area of the canopy density after the eruption, where there was 8833.95 ha of forest that experienced a decrease in canopy density, whereas forests with fixed canopy densities were 2149.38 Ha, and forests with an increase in canopy density were 1643.31 Ha.


Author(s):  
Nurhadi Bashit ◽  
Abdi Sukmono ◽  
Baskoro Agum Gumelar

Indonesia is an Archipelago Country because the Country of Indonesia consists of many islands stretching from Sabang in the west to the island of Merauke on the east. The Archipelago Country also comes from the old name of the Indonesian Country called Nusantara, because Nusantara is a country that consists of many islands. Indonesia is an Archipelago Country which means it has potential resources in the coastal areas, one of which is found on the northern coast of Java. The coastal area is an important area to be reviewed, one of which is the use of coastal resources by paying attention to the condition of the ecosystem that remains stable. Opportunities for coastal area utilization in the field of fisheries are in the form of fishing activities or fish farming, especially pond cultivation activities. Based on data from the Department of Marine and Fisheries of the Province of Central Java in 2010, pond cultivation is one of the potential resources on the coast. This potential is supported by the government to increase fish production in order to increase the consumption of fish in the community. Therefore, it is necessary to choose the most effective method of pond cultivation between traditional methods and intensive methods to optimize fish production. One indicator of effectiveness between the two methods can be seen from the phytoplankton distribution. Phytoplankton contains chlorophyll-a in the body and is a natural food from fish. Phytoplankton provides important ecological functions for the aquatic life cycle by serving as the basis of food webs in water. Phytoplankton also functions as the main food item in freshwater fish culture and seawater fish cultivation. Therefore, it is necessary to know the chlorophyll-a concentration in the ponds of traditional and intensive methods to determine the concentration chlorophyll-a of the two pond methods. One method used to determine the concentration of chlorophyll-a using remote sensing technology. Remote sensing technology can be used to determine the concentration of chlorophyll-a using the Wouthuyzen, Wibowo, Pentury, Much Jisin Arief and Lestari Laksmi algorithms. The results showed that the Pentury algorithm was relatively better to determine the concentration of chlorophyll-a in shallow waters (ponds). The lowest concentration of chlorophyll-a in traditional ponds is 0.47068 mg/m3, the highest concentration is 1.95017 mg/m3 and the average concentration is 1.12893 mg/m3, while in intensive ponds the lowest concentration is 0.36713 mg/m3, the concentration the highest is 3.17063 mg/m3 and the average concentration is 1.53556 mg/m3.


2020 ◽  
Vol 27 (2) ◽  
pp. 1-7
Author(s):  
M. Haruna ◽  
M.K. Ibrahim ◽  
U.M. Shaibu

This study applied GIS and remote sensing technology to assess agricultural land use and vegetative cover in Kano Metropolis. It specifically examined the intensity of land use for agricultural and non agricultural purpose from 1975 – 2015. Images (1975, 1995 and 2015), landsat MSS/TM, landsat 8, scene of path 188 and 052 were downloaded for the study. Bonds for these imported scenes were processed using ENVI 5.0 version. The result indicated five classified features-settlement, farmland, water body, vegetation and bare land. The finding revealed an increase in settlement, vegetation and bare land between 1995 and 2015, however, farmland decreased in 2015. Indicatively, higher percentage of land use for non agricultural purposes was observed in recent time. Conclusively, there is need to accord surveying the rightful place and priority in agricultural planning and development if Nigeria is to be self food sufficient. Keywords: Geographic Information System, Agriculture, Remote sensing, Land use, Land cover


2017 ◽  
Vol 862 ◽  
pp. 90-95 ◽  
Author(s):  
Agung Budi Cahyono ◽  
Dian Saptarini ◽  
Cherie Bhekti Pribadi ◽  
Haryo Dwito Armono

The three drivers of environmental change: climate change, population growth and economic growth, result in a range of pressures on our coastal environment. Coastal development for industry and farming are a major pressure on terrestrial and environmental quality. In their process most of industry using sea water as cooling water. When water used as a coolant is returned to the natural environment at a higher temperature, the change in temperature decreases oxygen supply and affects marine ecosystem. This research is presents results from ongoing study on application of Landsat 8 for monitoring the intensity and distribution area of sea surface temperature changed by the heated effluent discharge from the power plant on Paiton coast, Probolinggo, East Java province. Remote sensing technology using a thermal band in Operational Land Imager (OLI) sensor of Landsat 8 sattelite imagery (band 10 and band 11) are used to determine the intensity and distribution of temperature changes. Estimation of sea surface temperature (SST) using remote sensing technology is applied to provide ease of marine temperature monitoring with a large area coverage. The method used in this research using the Split Window Algorithm (SWA) methods which is an algorithm with ability to perform extraction of sea surface temperature (SST) with brigthness temperature (BT) value calculation on the band 10 and band 11 of Landsat 8. Formula which was used in this area is Ts = BT10 + (2.946*(BT10 - BT11)) - 0.038 (Ts is the surface temperature value (°C), BT10 is the brightness temperature value (°C) Band 10, BT11 is the brightness temperature value (°C) Band 11. The result of this algorithm shows the good performance with Root Mean Square Error (RMSE) amount 0.406.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mohammad Hadian ◽  
Abolfazl Mosaedi

The present study aimed to use remote sensing technology to estimate the concentration of particulate materials in the water entering the reservoirs of dams and consequently investigate the possibility of estimating the amount of sediment carried to the reservoir by flood during the life of the dam and its annual estimate. Using an advanced spectrometer device (ASD), the reflectance values of water containing different amounts of particulate sediments were measured in the range of 400–2500 nm; then, these reflectance values were represented for the Landsat 8 satellite OLI bands using their spectral response functions. In the study of interband correlation with the number of particulate materials, band 2 (blue) and band 5 (near-infrared) were identified to prepare a specific and appropriate model. The specificity of the reflectance difference in the two abovementioned bands was presented as an exponential relationship between the concentration of particulate materials and spectral reflectance. In this model, the RMSE parameter for the maximum possible sediment concentration was equal to 1.57 and the parameter R2 was equal to 0.91. In the second step, at the same time as the satellite passed, the area was visited and the sediments of the Ardak dam reservoir were sampled by recording their location. To complete this research, two measures were performed simultaneously, calculating the concentration of particulate materials sampled in the laboratory environment and their location on the image. Then, the number of particulate materials is estimated by taking into account the coordinates recorded from the images on which the relevant corrections have been made. According to the extracted exponential model, the results of estimating the concentration of particulate matter obtained from the model and Landsat satellite images with the concentration of particulate matter obtained from sampling showed its complete compatibility with field surveys to validate this research.


2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Jasem A Albanai ◽  

Mapping bathymetry is essential for many fields, including science, engineering, and the military, among others. Bathymetry is extremely important in the scientific field because it is linked to many physical and environmental issues such as coastal erosion, sea-level rise, and water quality. Traditionally, conventional methods, such as pre-measured cable passage, were used to estimate depths. Lately, echo-sounder assessments were used on hydrograph ships. This method is effective, but it is very costly in both economic and time terms. Remote sensing technology provides modern methods for mapping bathymetry, such as the use of active and passive remote sensing. Many satellite sensors cover multispectral bands. Some are commercial, such as IKONOS and WorldView, while others are freely available, such as Landsat 8 and Sentinel-2. In this study, Landsat 8 (15 meters spatial resolution) was used to estimate the depths of the waters of Kuwait, an Arabian Gulf country located on the Northwestern side of the gulf. Ground truthing points (GTPs) were used to build a bathymetric model of Kuwaiti territorial water (KTW) using the ratio transform algorithm (RTA) applied on Landsat 8 data. The results showed a good ability of Landsat 8 and RTA to estimate the depths of Kuwait’s waters, where the relationship between the derived model from Landsat 8 and the GTPs was positive (r2 = 0.9634). Meanwhile, the accuracy of the derived bathymetric model was evaluated by computing the Root Mean Square Error (RMSE = ± 1.66 meters) and Mean Absolute Error (MAE ± = 1.29).


Jurnal Segara ◽  
2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Anang Dwi Purwanto

The development of remote sensing technology for identifying various of coastal and marine ecosystems which one of them is mangrove forest increasing rapidly. Identification of mangrove forests visually is constrained by much of combinations of RGB composite. The aims of this research is to determine the best combination of RGB composite for identifying mangrove forest in Segara Anakan, Cilacap using Optimum Index Factor (OIF) method. The image data used represents 3 levels of intermediate to high resolution spatial resolution including Landsat 8 imagery (30 m) acquisition on 30 May 2013, Sentinel 2A image (10 m) acquisition on 18 March 2018 and SPOT 6 image (6 m) acquisition on 10 January 2015. Data of mangrove distributions used were the results of field measurements in the period 2013-2015. The results showed that the band composites of 564 (NIR+SWIR+Red) of Landsat 8 image and the band composites of 8a114 (Vegetation Red Edge+SWIR+Red) of Sentinel 2A are the best RGB composites for identifying mangrove forest, while the band composites of 341 (Red+NIR+Blue) of SPOT 6 image is  also the best colour composites (R-G-B) for identifying mangrove forest in Segara Anakan, Cilacap. The RGB composites of images developed from Landsat 8 and Sentinel 2A image are able to distinguish objects of mangrove forest from surrounding objects more clearly, but image composites from SPOT 6 image still require additional of association elements to identify mangrove objects.The development of remote sensing technology for identifying various of coastal and marine ecosystems which one of them is mangrove forest increasing rapidly. Identification of mangrove forests visually is constrained by much of combinations of RGB composite. The aims of this research is to determine the best combination of RGB composite for identifying mangrove forest in Segara Anakan, Cilacap using Optimum Index Factor (OIF) method. The image data used represents 3 levels of intermediate to high resolution spatial resolution including Landsat 8 imagery (30 m) acquisition on 30 May 2013, Sentinel 2A image (10 m) acquisition on 18 March 2018 and SPOT 6 image (6 m) acquisition on 10 January 2015. Data of mangrove distributions used were the results of field measurements in the period 2013-2015.The results showed that the band composites of 564 (NIR+SWIR+Red) of Landsat 8 image and the band composites of 8a114 (Vegetation Red Edge+SWIR+Red) of Sentinel 2A are the best RGB composites for identifying mangrove forest, while the band composites of 341 (Red+NIR+Blue) of SPOT 6 image is  also the best colour composites(R-G-B) for identifying mangrove forest in Segara Anakan, Cilacap. The RGB composites of images developed from Landsat 8 and Sentinel 2A image are able to distinguish objects of mangrove forest from surrounding objects more clearly, but imagecomposites from SPOT 6 image still require additional of association elements to identify mangrove objects.


Author(s):  
O. E. Mora ◽  
M. G. Lenzano ◽  
C. K. Toth ◽  
D. A. Grejner-Brzezinska

Spatial resolution plays an important role in remote sensing technology as it defines the smallest scale at which surface features may be extracted, identified, and mapped. Remote sensing technology has become a vital component in recent developments for landslide susceptibility mapping. The spatial resolution is essential, especially when landslides are small and the dimensions of slope failures vary. If the spatial resolution is relevant to the surface features found in the landslide morphology, it will help improve the extraction, identification and mapping of landslide surface features. Although, the spatial resolution is a well-known issue, few studies have demonstrated the potential effects it may have on small landslide susceptibility mapping. For these reasons, an evaluation to assess the impact of spatial resolution was performed using data acquired along a transportation corridor in Zanesville, Ohio. Using a landslide susceptibility mapping algorithm, landslide surface features were extracted and identified on a cell-by-cell basis from Digital Elevation Models (DEM) generated at 50, 100, 200 and 400 cm spatial resolution. The performance of the landslide surface feature extraction algorithm was then evaluated using an inventory map and a confusion matrix to assess the effects of spatial resolution. In addition to assessing the performance of the algorithm, we statistically analyzed the surface features and their relevant patterns. The results from this evaluation reveal patterns caused by the varying spatial resolution. From this study we can conclude that the spatial resolution has an effect on the accuracy and surface features extracted for small landslide susceptibility mapping, as the performance is dependent on the scale of the landslide morphology.


2021 ◽  
Vol 4 (2) ◽  
pp. 127
Author(s):  
Eva Achmad ◽  
Agus Kurniawan ◽  
Yunita Lestari

Critical land occured as a result of land cover changes from vegetated into non vegetated land or the composition of the vegetation has changed. This study aimed to analyze the distribution of land critical at KPHP Unit XII Batanghari. Critical land analysis was based on the Perdirjen PDASHL Number P.3/PDASHL/SET/KUM.1/7/2018. Land is classified into 5 levels of criticality, namely: non-critical, critical potential, somewhat critical, critical and very critical. The parameters used in determining the level of criticality of the land are: land cover, erosion-prone class, slope class and the presence of land inside or outside the forest function. Spatial analysis used by Geographic Information System (GIS) and remote sensing technology. GIS is able to analyze and represent geographic phenomenon. Landsat 8 imagery was analyzed to obtain land cover clasification. The results of the analysis showed that critical land level of KPHP Unit XI Batanghari consisted of 3,609 ha (4.45%) that classified as very critical and 3,599 ha (4,43%) as critical land. Then, land with a somewhat critical level had the largest area, namely 26,024 ha or 32.07% of the total area of KPHP Unit XII Batanghari. The landcover was the main parameter to determine the level of criticality of the land. The openland cover type had the maximum score 60.


Author(s):  
J. T. Zhu ◽  
Y. Luo ◽  
M. X. Zhao ◽  
L. Wang ◽  
C. F. Gong ◽  
...  

Abstract. Armillariella mellea mainly distributes in Changbai Mountain forest area, which is one of the few edible fungi that can be cultured artificially. It contains a variety of essential amino acids and vitamins for human body. Frequent consumption can strengthen the body immunity. It is of great significance to analyze the growth environment of Armillariella mellea by remote sensing technology for its growth prediction and artificial cultivation research. Based on ENVI software and Landsat 8 image, the surface temperature and soil moisture in Xiao Hinggan Mountains in August 2014 were retrieved by the method of atmospheric correction and TVDI, and the optimum growth environment of Armillariella mellea was analyzed. The results are as follows: 1) The optimum growth temperature of Armillariella mellea is 25–30 °C, and the soil moisture condition is 0.4–0.6. The Armillariella mellea mainly distributes in the north-central part of the study area. Combined with other growth environment information, the study area is generally suitable for the growth of Armillariella mellea; 2) we found the Armillariella mellea around the area of 83 samples of 100 samples which were choose to analyse. The accuracy is higher; 3) It is feasible to obtain the optimum growth environment of Hazelnut mushroom by remote sensing technology.


Sign in / Sign up

Export Citation Format

Share Document