scholarly journals Shear Bond Strength of Ormocer-Based Restorative Material Using Specific and Nonspecific Adhesive Systems

2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Ibrahim M. Hamouda ◽  
Salah H. Shehata

The aim of this study was to evaluate the shear bond strength of ormocer-based restorative material bonded to tooth structure using specific ormocer and nonspecific resin-based adhesives. Human molars were prepared to obtain flat buccal enamel surfaces and flat occlusal dentin surfaces. Admira bond, and Prime & Bond NT, Excite, AdheSE, and Prompt-L-Pop were applied to the prepared enamel and dentin surfaces. Ormocer restorative material was inserted into a mold fixed onto the prepared tooth surfaces. The restorative material was applied and cured. The shear bond strength was measured using a universal testing machine. The highest bond strength was recorded for Admira bond. The non-specific adhesives (AdheSE and Prompt-L-Pop) were recorded the lowest bond strength. Etch & Rinse (Prime & Bond NT and Excite) adhesives were recorded an intermediate values. Admira bond usually showed cohesive failure in the material with enamel and cohesive and mixed failure with the dentin. Etch & Rinse adhesives showed mixed failure with the enamel and, mixed and adhesive failures with the dentin. Self-etching adhesives commonly exhibited adhesive mode of failure. So, Etch & Rinse, non-specific bonding agents can be used with Admira ormocer-based restorative material when the specific adhesive is depleted.

2018 ◽  
Vol 12 (1) ◽  
pp. 1029-1035
Author(s):  
Bennett T. Amaechi ◽  
Kaveh Najibfard ◽  
Irene P. Chedjieu ◽  
Hariyali Kasundra ◽  
Linda O. Okoye

Objective: This study investigated the effects, on the shear bond strength of orthodontic brackets, of using an antimicrobial selenium-containing sealant (DenteShieldTM) to serve dual functions of priming enamel prior to bonding and as a protective barrier against whitespot lesion formation. Materials and Methods: A total of 150 extracted human premolars were randomly assigned into 10 groups (n=15/group). Stainless steel brackets were bonded with two adhesive systems (DenteShieldTM or Transbond XT) after the enamel was conditioned with a primer (DenteShieldTM or Assure Universal) or a filled resin sealant (DenteShieldTM, Pro SealTM or Opal SealTM). The specimens were stored in deionized water at 37 °C for 24 hours and debonded with a universal testing machine. Results: The use of DenteShieldTM adhesive to bond orthodontic brackets to the enamel surface resulted in a significantly lower (P<0.05), but clinically acceptable, shear bond strength (mean & SD: 14.5±1.6 MPa) as compared with Transbond XT group (mean & SD: 19.3±1.7 MPa). DenteShieldTM sealant used as primer resulted in shear bond strength values comparable to those of Pro SealTM and Opal SealTM. All adhesive-sealant and primer-sealant combinations tested in this study exhibited shear bond strength values greater than 9.6 MPa, sufficient for clinical orthodontic needs. Conclusion: DenteShieldTM sealant can serve as primer as well as anti-demineralization sealant during orthodontic treatment without adversely affecting the shear bond strength of the bracket.


2015 ◽  
Vol 18 (3) ◽  
pp. 98 ◽  
Author(s):  
Luciana Sarmento Torres ◽  
Levy Anderson César Alves ◽  
Marcelo Fava ◽  
Rebeca Di Nicoló

Several adhesive systems have been developed in the last decade. T<span lang="EN-US"><span lang="EN-US">he aim of the current study was to evaluate the shear bond strength of orthodontic brackets bonded with conventional primers or self-etching primers, artificially aged by means of thermocycling and thermomechanical procedures.90 bovine incisors were used in the investigation. The roots were sectioned in the amelo-cementary junction. </span></span>All samples were randomly divided in 2 groups ( n= 45), according to the primer used for bracket bonding. XT Group–hydrophobic conventional primer (Transbond XT, 3M unitek, Monrovia, Calif); SEP Group –self-etching primer (Transbond Plus SEP, 3 M Unitek, Monrovia, Calif). All specimens were bonded with XT Transbond resin adhesive (3 M Unitek, Monrovia, Calif). A Universal Testing Machine EMIC DL2000 (EMIC Equip. Sist. Ensaio Ltda., São José dos Pinhais, PR, Brazil) was used for the collection of the values of SBS resistance. The results of the current study were: (Prompt L-Pop 1.72±0.13 MPa; Clearfil SE Bond 1.75±0.19 MPa; FL Bond 1.71±0.22 MPa; One-Up Bond 1.77±0.14 MPa; XT Control 10.5±0.86 MPa). In conclusion: the number of cycles in thermal and thermo mechanical cycling did not influence shear bond strength values for any of the primers tested;SEP Transbond Plus showed the greatest values for bond strength of orthodontic brackets.


2021 ◽  
Vol 32 (5) ◽  
pp. 96-104
Author(s):  
Ma’an M Nayif ◽  
Masayuki Otsuki ◽  
Junji Tagami

Abstract The aim of this study was to evaluate the micro-shear bond strength (µSBS) of one and two steps self-etch adhesive systems after enamel bleaching with photo-activated bleaching systems of different hydrogen peroxide (HP) concentration. Occlusal enamel of forty intact human molars were flattened and assigned into four groups. GI Unbleached, GII, GIII, and GIV were bleached with Pyrenees (3.5% HP), GC TiON (20% HP), and Hi-Lite (35% HP) respectively. Enamel treatment with one and two steps self-etch adhesives (Clearfil S3 Bond- S3, and Clearfil SE Bond-SE) then micro-tubes were fixed on enamel and filled with AP-X composite (n=5). Bond was tested with the universal testing machine. Data were analyzed using two-way ANOVA and Tukey’s tests at 5 % level of significance. The µSBS was significantly different between adhesives (F=154.46; p<0.05) and bleaching systems (F=77.33; p<0.05) with significant interaction. Specimens bonded with S3 shows a significantly lower μSBS than those bonded with SE (p<0.05) in all groups. For both adhesives the bleached groups demonstrate lower µSBS than unbleached except specimens bleached with Pyrenees and bonded with SE (p>0.05). A significant difference was observed between groups of the bleaching systems (p<0.05). Different peroxide concentrations photo-activated bleaching systems adversely affect μSBS of one and two steps self-etch adhesives. Low concentration system (Pyrenees) does not influence the bond strength of two steps adhesive.


2016 ◽  
Vol 41 (3) ◽  
pp. E48-E56 ◽  
Author(s):  
S Deng ◽  
KH Chung ◽  
DCN Chan ◽  
C Spiekerman

SUMMARY Objectives: To evaluate the effect on both bond strength and microleakage of incorporation of a novel antibacterial nanoparticulate metal-titanate complex (nMT) into a dental adhesive system. Materials and Methods: Eighty extracted human molars were prepared to determine whether incorporation of nMT into bonding agents can affect shear bond strength (SBS) and adhesive strength fatigue. SBS was measured with a universal testing machine, and the peak force at failure was recorded. An electromechanical fatigue machine was used for cyclic loading treatment of specimens. Differences in the SBS values among groups were identified using analysis of variance and Tukey post hoc analyses (α=0.05). Twenty standard Class V cavities were restored to examine microleakage when the primer/bonding resin was modified with 10 wt% nMT. Microleakage at the enamel and dentin margins was calculated as a percentage of the full length of the cavity. Results of the microleakage experiment were analyzed with paired and independent sample t-tests (α=0.05). Results: The mean (± standard deviation) shear bond strength values of before fatigue and after fatigue ranged from 21.9 (2.5) MPa to 23.9 (3.8) MPa and from 17.1 (2.5) MPa to 17.7 (2.5) MPa respectively. No statistically significant differences in failure force were observed among groups (p=0.70). Microleakage under all conditions was significantly greater in the dentin margins than in the enamel margins (p&lt;0.05). There was no evidence that microleakage differed between the experimental groups with modified primer and bonding resin. Conclusions: Incorporating nMT into a dental adhesive system will not compromise the resin composite's tooth bonding and sealing ability.


2015 ◽  
Vol 5 (1) ◽  
pp. 22-26
Author(s):  
Muzin Shahi Shaik ◽  
Snigdha Pattanaik ◽  
Sudhakar Pathuri ◽  
Arunachalam Sivakumar

Introduction: Bond strength is an important property and determines the amount of force delivered and treatment duration in orthodontics. Many light-cured bonding materials are being used; but it is required to determine the most efficient one withdesired bond strength. Objective: To determine and compare the shear bond strength of three visible light-cured composites (Transbond XT, Heliositand Enlight) and two self-cured composites (Rely-a-bond and Concise). Materials & Method: 100 extracted premolars were collected and randomly divided into 5 test groups of different adhesives. Brackets were bonded to the teeth in each test group with the respective adhesive according to the manufacturer’s instructions. Each specimen was debonded using Universal Testing Machine and the shear bond strength for each specimen was calculated. All the groups were compared by ANOVA one-way test. Results: There were statistically significant differences among the five groups (P<0.05). The shear bond strength of Enlight (13.92 ± 3.92) is similar to Transbond XT (14.30 ± 4.35). Conclusion: Light cure composites showed higher bond strength than self cure composites.


2020 ◽  
Vol 8 (10) ◽  
pp. 454-459
Author(s):  
Bhalla V. ◽  
◽  
K. Goud M. ◽  
Chockattu S. ◽  
Khera A ◽  
...  

Background:Dentin bonding is an ever-evolving field in adhesive dentistry. With the introduction of newer systems into the market, there is a crucial need to test their efficiency in terms of bond strength. Dual-cured adhesives in theory may provide for a better degree of conversion as compared to conventional light-cured adhesives .Thus, the aim of this study was to compare the shear bond strength of three different self-etch adhesives namely ClearfilSE bond (Kuraray), Tetric N Bond Universal (IvoclarVivadent) and Futura Bond DC (Voco) to dentin. Materials & Methods: Ninety extracted non-carious, intact human mandibular molar teeth were selected for this study. Each tooth was decoronated using a double-sided diamond disc with water coolant to a depth of 2mm from the cusp tip .The cut dentin surface was then abraded against 600-grit wet silicon carbide papers for 60 seconds to produce a uniform smear layer. The root portion of each tooth was mounted on a plastic ring using cold cure acrylic resin. Specimens were then divided into three adhesive groups of 30 teeth each, Group A: ClearfilSE Bond (Kuraray), Group B: Tetric N Bond Universal (IvoclarVivadent), Group C :Futura Bond DC (Voco). All bonding agents were used according to the manufacturers’ instructions, in combination with the resin composite Tetric N Ceram (IvoclarVivadent). The samples were thermocycled, followed by shear bond strength testing using a Universal testing machine (Hounsfield). Data were subjected to statistical analysis using one-way analysis of variance (ANOVA) (P<0.05) and Post hoc Tukey’s test for inter- and intra- group analysis respectively. Results: Clearfil SE Bond yielded the highest shear bond strength values (30.9 ±4.66 MPa) which were statistically significant, followed byTetric N Bond Universal group (29.8 ±4.34) and the lowest shear bond strength values were recorded for Futura Bond DC (18.2 ±3.13). Conclusion: Clearfil SE bond and Tetric N bond Universal can be considered as better options than Futura Bond DC.


2014 ◽  
Vol 62 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Ricardo Alves dos SANTOS ◽  
Eliane Alves de LIMA ◽  
Mônica Maria de Albuquerque PONTES ◽  
Alexandre Batista Lopes do NASCIMENTO ◽  
Marcos Antônio Japiassú Resende MONTES ◽  
...  

OBJECTIVE: To assess the bond strength to dentin of the Single Bond (3M ESPE) and XP Bond (Dentsply) total-etch and Adper SE Plus (3M ESPE) self-etch adhesive systems. METHODS: Fifteen healthy human third molars were randomly allocated across three different groups of five teeth each according to the adhesive system. The occlusal portion of each tooth was removed under refrigeration using a flexible diamond disc (EXTEC, Enfield, CT, USA) down to an area of dentin that did not reveal enamel, as confirmed under a 40X stereo microscope (Ramsor, São Paulo, Brazil). A standardized smear layer was created with #600 grit silicon-carbide paper. The adhesive systems were applied as per manufacturer recommendations, with the exception of the Adper SE Plus system, which was triple-polymerized. Composite resin blocks (5 mm) were placed on the dentin surface. The specimens were stored in distilled water for 24 hours at 37ºC. Using a flexible diamond disc (EXTEC, Enfield, CT, USA), toothpick-like specimens with an adhesive area of less than 1 mm² were obtained. A microtensile bond test was then carried out using a universal testing machine (KRATOS) with a crosshead speed of 0.5 mm/min. Analysis of variance (ANOVA) and Tukey's test were used for comparisons. RESULTS: The bond strength values obtained with each adhesive system were as follows: XP Bond, 96.24 MPa; Adper Single Bond, 72.39 MPa; Adper SE Plus, 49.91 MPa. CONCLUSION: In terms of bond strength to dentin, conventional adhesives outperform self-etching systems.


2011 ◽  
Vol 492 ◽  
pp. 18-23
Author(s):  
Xin Yi Zhao ◽  
Shi Bao Li ◽  
Xu Gong

To evaluate the effects of specimen grips on the measurement of the micro-tensile bond strength (mTBS) to dentin. Methods: Twelve extracted human molars were sectioned to expose mid-coronal dentin. Each surface was ground with 600-grit SiC paper. Four adhesives: Prime & Bond NT (Dentsply, USA), Contex (DMG, German), Adper Prompt (3M/ESPE, USA) and Clearfil S3Bond (Kuraray, Japan) were applied to the polished surfaces followed by creation of composite buildups. After 24 hr storage in 37°C water, the teeth were sectioned perpendicular to the adhesive interface to produce multiple beams of composite-bonded dentin, approximately 0.8 mm2in cross-sectioned area. Half of the specimens were attached to testing grips A which did not contain positioning pins and another half were attached to the testing grips B which contained positioning pins. All specimens were tested using a universal testing machine at a crosshead speed of 1.0 mm/min. Results: Specimens tested using the grips A presented lower mTBS than using the grips B (P<0.01). Many specimens tested using the grips A showed mix failure or cohesive failure within composite, and most of the failures were adhesive for specimens tested using the grips A. Conclusion: Specimen grips without positioning pins cannot accurately present mTBS and the grips with positioning pins can more accurately present mTBS.


2009 ◽  
Vol 79 (3) ◽  
pp. 564-570 ◽  
Author(s):  
Toshiya Endo ◽  
Rieko Ozoe ◽  
Koichi Shinkai ◽  
Makiko Aoyagi ◽  
Hiroomi Kurokawa ◽  
...  

Abstract Objective: To ascertain the effects of repeated bonding on the shear bond strength of orthodontic brackets bonded with a fluoride-releasing and -recharging adhesive system with a self-etching primer in comparison with two other types of adhesive system. Materials and Methods: A total of 48 premolars were collected and divided equally into three groups of 16. Each group was assigned one of three adhesive systems: Transbond XT, Transbond Plus, or a fluoride-releasing and -recharging adhesive system, Beauty Ortho Bond. Shear bond strength was measured 24 hours after bracket bonding, with the bonding/debonding procedures repeated twice after the first debonding. A universal testing machine was used to determine shear bond strengths, and bracket/adhesive failure modes were evaluated with the adhesive remnant index after each debonding. Results: At every debonding sequence, all of these three adhesive systems had a shear bond strength of 6 MPa, which is a minimum requirement for clinical use. Transbond XT and Transbond Plus had significantly higher mean shear bond strengths than did Beauty Ortho Bond at each debonding. No significant differences in mean bond strength were observed between the three debondings in each adhesive system. Bond failure at the enamel/adhesive interface occurred more frequently in Beauty Ortho Bond than in Transbond XT or Transbond Plus. Conclusions: The fluoride-releasing and -recharging adhesive system with the self-etching primer (Beauty Ortho Bond) had clinically sufficient shear bond strength in repeated bracket bonding; this finding can help orthodontists to decrease the risk of damage to enamel at debonding.


2006 ◽  
Vol 530-531 ◽  
pp. 605-611
Author(s):  
M.C. Bottino ◽  
D.K. Oyafuso ◽  
Paulo Guilherme Coelho ◽  
Elisa B. Taddei ◽  
Vinicius André Rodrigues Henriques ◽  
...  

The shear bond strength between a ceramic material (Titankeramik®, Vita Zahnfabrik, Germany) and two biocompatible titanium alloys was investigated. Ti-13%Nb-13%Zr (TNZ) and Ti-35%Nb-7%Zr-5%Ta (TNZT) alloys were obtained based on the blended elemental technique followed by a sequence of cold uniaxial and isostatic pressing and sintering. Characterization involved microstructural analysis (SEM) and crystalline phase identification (XRD). Subsequently, samples were machined to 4 x 4 mm with a base of 5 x 1 mm. The base metals were blasted with Al2O3 particles followed by the application of a coupling agent and opaque ceramic. After ceramic firing, the specimens were loaded in a universal testing machine (0,5mm/min). XRD revealed the presence of α and β-phases for TNZ, and peaks related to β phases and Nb and Ta for the TNZT alloy. SEM evaluation (TNZ) depicted remaining pores and biphasic microstructure formation. SEM micrographs of the TNZT alloy revealed good densification and a homogeneous β structure. Shear bond strength data (MPa) were statistically analyzed (one-way ANOVA and Tukey test, α=.05) revealing that TNZT (37.6 ± 2.91) presented significant higher values (p=0.0002) compared to TNZ (26.03 ± 2.92). In conclusion, it seems that Ti alloy composition plays a significant role on ceramic bonding.


Sign in / Sign up

Export Citation Format

Share Document