scholarly journals Host Defence against Bacterial Biofilms: “Mission Impossible”?

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Gertrud Maria Hänsch

Bacteria living as biofilms have been recognised as the ultimate cause of persistent and destructive inflammatory processes. Biofilm formation is a well-organised, genetically-driven process, which is well characterised for numerous bacteria species. In contrast, the host response to bacterial biofilms is less well analysed, and there is the general believe that bacteria in biofilms escape recognition or eradication by the immune defence. In this review the host response to bacterial biofilms is discussed with particular focus on the role of neutrophils because these phagocytic cells are the first to infiltrate areas of bacterial infection, and because neutrophils are equipped with a wide arsenal of bactericidal and toxic entities. I come to the conclusion that bacterial biofilms are not inherently protected against the attack by neutrophils, but that control of biofilm formation is possible depending on a timely and sufficient host response.

2020 ◽  
Vol 99 (1_suppl) ◽  
pp. 22S-29S
Author(s):  
Tal Marom ◽  
Nadeem Habashi ◽  
Robert Cohen ◽  
Sharon Ovnat Tamir

Objective: Nearly half of children who undergo tympanostomy tube (TT) insertion may experience otorrhea following surgery. We sought to review the evidence for the role of bacterial biofilms in post-tympanostomy tube otorrhea (PTTO) and the accumulated experience regarding the preventive measures for biofilm formation/adhesion on TTs. Methods: English literature search for relevant MeSH keywords was conducted in the following databases: MEDLINE (via PubMed), Ovid Medline, Google Scholar, and Clinical Evidence (BMJ Publishing) between January 1, 1995, and December 31, 2019. Subsequently, articles were reviewed and included if biofilm was evident in PTTO. Results: There is an increased evidence supporting the role of biofilms in PTTO. Studies on TT design and material suggest that nitinol and/or silicone TTs had a lower risk for PTTO and that biofilms appeared in specific areas, such as the perpendicular junction of the T-tubes and the round rims of the Paparella-type tubes. Biofilm-component DNAB-II protein family was present in half of children with PTTO, and targeting this protein may lead to biofilm collapse and serve as a potential strategy for PTTO treatment. Novel approaches for the prevention of biofilm-associated PTTO include changing the inherent tube composition; tube coating with antibiotics, polymers, plant extracts, or other biofilm-resistant materials; impregnation with antimicrobial compounds; and surface alterations by ion-bombardment or surface ionization, which are still under laboratory investigation. Conclusions: Currently, there is no type of TT on which bacteria will not adhere. The challenges of treating PTTO indicate the need for further research in optimization of TT design, composition, and coating.


Author(s):  
Junjie Mei ◽  
Yuhong Liu ◽  
Michael Favara ◽  
Ning Dai ◽  
Samithamby Jeyaseelan ◽  
...  

2021 ◽  
Vol 17 (5) ◽  
pp. e1009553
Author(s):  
Svava E. Steiner ◽  
Ferdinand X. Choong ◽  
Haris Antypas ◽  
Carlos E. Morado-Urbina ◽  
Anette Schulz ◽  
...  

Bacterial infection results in a veritable cascade of host responses, both local and systemic. To study the initial stages of host-pathogen interaction in living tissue we use spatially-temporally controlled in vivo models. Using this approach, we show here that within 4 h of a uropathogenic Escherichia coli (UPEC) infection in the kidney, an IFNγ response is triggered in the spleen. This rapid infection-mediated inter-organ communication was found to be transmitted via nerve signalling. Bacterial expression of the toxin α-hemolysin directly and indirectly activated sensory neurons, which were identified in the basement membrane of renal tubules. Nerve activation was transmitted via the splenic nerve, inducing upregulation of IFNγ in the marginal zones of the spleen that led to increasing concentrations of IFNγ in the circulation. We found that IFNγ modulated the inflammatory signalling generated by renal epithelia cells in response to UPEC infection. This demonstrates a new concept in the host response to kidney infection; the role of nerves in sensing infection and rapidly triggering a systemic response which can modulate inflammation at the site of infection. The interplay between the nervous and immune systems is an exciting, developing field with the appealing prospect of non-pharmaceutical interventions. Our study identifies an important role for systemic neuro-immune communication in modulating inflammation during the very first hours of a local bacterial infection in vivo.


2016 ◽  
Vol 65 (4) ◽  
pp. 65-75 ◽  
Author(s):  
Kira V. Shalepo ◽  
Tatiana G. Mihailenko ◽  
Alevtina M. Savicheva

Microbial biofilms are a problem in many areas of medicine. When the vaginal ecological system is disturbed, well-structured polymicrobial biofilm, covering the vaginal epithelium and consisting of anaerobic bacteria, is formed, which may lead to the development of recurrent bacterial vaginosis. During an ascending infection and the development of chronic endometritis, bacterial biofilms are detected in the endometrium. Biofilms formed by bacteria residing in the urogenital tract of woman, may result in dysfunctions of the reproductive system, in-vitro fertilization failures, complications of pregnancy, adverse pregnancy outcomes. In the paper, literature data regarding causes of of biofilm formation, methods of detection and treatment of biofilm infections are reviewed.


2016 ◽  
Vol 8 (3) ◽  
pp. 223-227 ◽  
Author(s):  
Siamon Gordon

The year 2016 marks the centenary of the death of Elie Metchnikoff, the father of innate immunity and discoverer of the significance of phagocytosis in development, homeostasis and disease. Through a series of intravital experiments on invertebrates and vertebrates, he described the role of specialised phagocytic cells, macrophages and microphages, subsequently renamed neutrophils and polymorphonuclear leucocytes, in the host response to injury, inflammation, infection and tissue repair. As a vigorous proponent of cellular immunity, he championed its importance versus humoral immunity in the so-called antibody wars. By 1908, when the Nobel Prize was awarded to Elie Metchnikoff and Paul Ehrlich, this debate was not yet resolved. Even earlier, Metchnikoff had turned his research interests to the process of ageing and the possible link to intestinal auto-intoxication, giving rise to the current interest in the microbiome of the gut and the use of probiotics to promote health and longevity. During the past century, Metchnikoff's reputation has waxed and waned, as lymphocyte heterogeneity, specificity and memory began to dominate the field of adaptive immunity, yet his benign visage continues to provide an iconic presence for specialists in innate immunology, whose studies have made a striking comeback in the past decade. In this review, I shall consider the nature of his studies and the person as well as the legendary description of his Eureka experience in Messina in 1882, a story loved by students and investigators alike, that marked, in his own words, his transformation from zoologist to pathologist.


Sign in / Sign up

Export Citation Format

Share Document