scholarly journals Particle Beam Therapy for Cancer of the Skull Base, Nasal Cavity, and Paranasal Sinus

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nobuyoshi Fukumitsu

Particle beam therapy has been rapidly developed in these several decades. Proton and carbon ion beams are most frequently used in particle beam therapy. Proton and carbon ion beam radiotherapy have physical and biological advantage to the conventional photon radiotherapy. Cancers of the skull base, nasal cavity, and paranasal sinus are rare; however these diseases can receive the benefits of particle beam radiotherapy. This paper describes the clinical review of the cancer of the skull base, nasal cavity, and paranasal sinus treated with proton and carbon ion beams, adding some information of feature and future direction of proton and carbon ion beam radiotherapy.

2020 ◽  
Vol 8 ◽  
Author(s):  
Hongtao Luo ◽  
Zhen Yang ◽  
Qiuning Zhang ◽  
Lihua Shao ◽  
Shihong Wei ◽  
...  

Radiation therapy is an important component of the comprehensive treatment of esophageal cancer. However, conventional radiation resistance is one of the main reasons for treatment failure. The superiority of heavy ion radiation in physics and biology has been increasingly highlighted in radiation therapy research. The Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway plays an important role in the occurrence, development and metastasis of esophageal squamous cell carcinoma (ESCC) and is related to the development of resistance to ionizing radiation in ESCC. Therefore, the aim of the present study was to investigate the relationship between carbon ion inhibition of the proliferation and metastasis of esophageal carcinoma cells and the JAK2/STAT3 signaling pathway. The results demonstrated that carbon ion beams significantly reduced cell viability and stimulated apoptosis in human ESCC cells in a dose-dependent manner. In addition, carbon ion beams induced G2/M phase cell cycle arrest in ESCC cells and inhibited tumor metastasis in a dose-dependent manner. Additionally, poorly differentiated KYSE150 cells were more sensitive to the same carbon ion beam dose than moderately differentiated ECA109 cells. Carbon ion beam exposure regulated the relative expression of metastasis-related molecules at the transcriptional and translational levels in ESCC cells. Carbon ion beams also regulated CDH1 and MMP2 downstream of the STAT3 pathway and inhibited ESCC cell metastasis, which activated the STAT3 signaling pathway. This study confirmed the inhibition of cell proliferation and the metastatic effect of carbon ion beam therapy in ESCC cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Nobuo Ohta ◽  
Yusuke Suzuki ◽  
Azusa Hasegawa ◽  
Masaru Aoyagi ◽  
Seiji Kakehata

Objective. To evaluate the treatment outcome and prognostic factors in patients with sinonasal malignant tumors invading skull base.Study Design and Setting. A retrospective clinical study at the Yamagata University School of Medicine.Subjects and Methods. Three patients with sinonasal malignant tumors invading skull base were presented in present study. All patients were treated with carbon ion beam radiotherapy. The prescribed dose to the center of the clinical target volume was 64.0 GyE/16 fractions over 4 weeks at 4.0 GyE/fraction per day.Results. All patients completed carbon ion beam radiotherapy without an interval. The mean observation period was 39.6 months (range: 11–54 months). There were no local or regional recurrences in all cases; however, one patient had a metastasis in distant organs. Regarding the complications, visual loss was observed in one eye of one patient whose optic nerve was entirely involved by the tumor and field of carbon ion beam radiotherapy. Radiation induced brain injury was observed in two patients; however, these patients do not complain about neurological abnormality and had no treatment for radiation induced brain necrosis.Conclusions. Carbon ion beam radiotherapy for sinonasal malignant tumors invading the skull base showed therapeutic effectiveness.


1995 ◽  
Vol 396 ◽  
Author(s):  
M.H. Sohn ◽  
YO. Ahn ◽  
Y.W. Ko ◽  
Y. Park ◽  
S.I. Kim

AbstractA novel rectilinear negative carbon ion beam source for large-area coatings has been developed, based on SKION's Solid State Ion Beam Technology. The negative carbon ion beam is effectively produced by a primary cesium ion bombardment and the secondary negative carbon ion yield has been observed to be about 0.5. The ion source produces a negative carbon ion current density of 0.25 mA/cm2 at the extraction voltage of 4 kV. The ion beam energy can be independently controlled from 0 eV to 300 eV. Due to the rectilinear geometry for the production of ion beams, the scale-up of the ion beam in length direction can be easily obtained with no limit. Furthermore, the ion source uses no gas discharge to generate ion beams and does not use any hydrogen gas. The ion source can be operated in a high vacuum (<10-7 Torr), and the cesium vapors are filtered and recirculated. The ion source produces ultra-hard (50 GPa), atomically smooth (< 1 nm Ra), and hydrogen-free amorphous diamond-like-carbon (DLC) films over large areas.


2017 ◽  
Vol 180 (1-4) ◽  
pp. 157-161 ◽  
Author(s):  
P Colautti ◽  
V Conte ◽  
A Selva ◽  
S Chiriotti ◽  
A Pola ◽  
...  

2017 ◽  
Vol 43 ◽  
pp. 134-139 ◽  
Author(s):  
Matthias Prall ◽  
Anna Eichhorn ◽  
Daniel Richter ◽  
H. Immo Lehmann ◽  
Anna Constantinescu ◽  
...  

2013 ◽  
Vol 117 (4) ◽  
pp. 227-238 ◽  
Author(s):  
Liqiu Ma ◽  
Yusuke Kazama ◽  
Hirokazu Inoue ◽  
Tomoko Abe ◽  
Shin Hatakeyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document