scholarly journals ROLE OF CRISPR TO IMPROVE ABIOTIC STRESS TOLERANCE IN CROP PLANTS

Author(s):  
MU Farooq ◽  
MF Bashir ◽  
MUS Khan ◽  
B Iqbal ◽  
Q Ali

The study for genetic variation in plant genomes for a variety of crops, as well as developments of genome editing techniques, have made it possible to cultivate for about any desired trait. Zinc finger enzymes; have made strides in genome-editing. Molecular biologists can now more specifically target every gene using transcription activator-like effector nucleases and ZFNs. These methods, on the other hand, are expensive and time-consuming because they involve complex procedures. Referring to various genome editing techniques, CRISPR/Cas9 genetic modification is simple to construct and clone and the Cas9 could be used with different guide RNAs controlling different genes. Following solid evidence demonstrations using the main CRISPR-Cas9 unit in field crops, multiple updated Cas9 cassettes are often used in plant species to improve target precision and reduce off target cleavage. Nmcas9, Sacas9, as well as Stcas9 are a few examples. Furthermore, Cas9 enzymes are readily available from a variety of sources. Bacteria that had never been discovered before has found solutions available to improve specificity and efficacy of gene editing techniques. The choices are summarized in this analysis to plant's experiment to develop crops using CRISPR/Cas9 technology; the tolerance of biotic & abiotic stress may be improved. These strategies will lead to the growth of non-genetically engineered crops with the target phenotype, which will further improve yield capacity under biotic & abiotic stress environments.

Author(s):  
David Edwards ◽  
Armin Scheben

Abstract In this chapter, the relevant advances in genome editing technology and how they will enable improvement of abiotic stress tolerance in wheat are highlighted.


2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Author(s):  
Gábor Feigl ◽  
Árpád Molnár ◽  
Dóra Oláh ◽  
Zsuzsanna Kolbert

Author(s):  
Muhammad Naeem ◽  
Misbah Amir ◽  
Hamid Manzoor ◽  
Sumaira Rasul ◽  
Habib-ur-Rehman Athar

Sign in / Sign up

Export Citation Format

Share Document