scholarly journals Hormonal Physiological Changes of Testis Resulting From Exposure to Vinyl Cyanide and the Possible Protective Role of β-cryptoxanthin in Male Rat

2021 ◽  
Vol 36 (2) ◽  
pp. 167-174
Author(s):  
Nura I. Al-Zail

Vinyl cyanide (VCN) is an aliphatic nitrile product which is extensively used in various synthetic chemical industries. VCN is known to exert toxic actions to human beings as well as experimental animals. The present study was designed to examine the ability of β-cryptoxanthin, a naturally occurring antioxidant, to attenuate VCN-induced testicular toxicity in adult albino rats. Daily oral administration of VCN at a dose level of 30 mg/kg b.w. (7.2mg/ animal) to male rats for a period of 5 days significantly reduced the levels of serum testosterone (T), androsterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) which indicates injury to the testis function. Compared to VCN-treated animals, pretreatment with β-cryptoxanthin and its co-administration with VCN once daily at a dose of 40 mg/kg b.w. (9.6mg/ animal) for 30 days induced a remarkable degree of improvement in the levels of endocrine parameters including T, androsterone, FSH and LH. In conclusion, the present results clearly demonstrate the protective role of β-cryptoxanthin against VCN-induced physiological changes in the testis of rats.

Author(s):  
Ehab Tousson ◽  
Afaf El-Atrash ◽  
Yosra Karson

Background and Objective: Monosodium glutamate (MSG) is identified as an Accent that is used in the food industry as a flavour enhancer with an umami taste that intensifies the meaty, savoury flavour of food. The present study aimed at evaluating the protective and ameliorative role of rocket seeds extract against monosodium glutamate-induced hepatic renal toxicity and oxidative stress in the male rat. Materials and Methods: A total of 60 male adult albino rats were equally divided into six groups (G1, Control; G2, rocket seeds (RS); G3, ACCENT or MSG; G4, Co- treated (RS+MSG); G5, Post- treated (MSG+RS); G6, Self-treated MSG).  Results: Current results revealed that; a significant increase in serum ALT, AST, ALP, AFP, Urea, Creatinine, potassium ions, chloride ions, cholesterol, triglyceride, HDL, and LDL levels in MSG as compared to control and RS groups. In contrast; a significant decrease in serum albumin, total proteins, catalase, GSH and SOD in liver and kidney homogenates in MSG as compared to control and RS groups. Co- or post-treatment of MSG with rocket seeds improved this change in liver and kidney functions, with best results for co-treatment than post and self-treatment. Conclusion: These findings suggested that the misuse of monosodium glutamate may contribute to continuous hepatic and renal damage. This shows that the desired dose of monosodium glutamate can safely be used with grapes seed in improving hepatic and renal damage in monosodium glutamate in young rats.


2010 ◽  
Vol 62 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Ivana Trbojevic ◽  
Branka Ognjanovic ◽  
Natasa Djordjevic ◽  
Snezana Markovic ◽  
A.S. Stajn ◽  
...  

The role of oxidative stress in cisplatin (CP) toxicity and its prevention by pretreatment with selenium (Se) was investigated. Male Wistar albino rats were injected with a single dose of cisplatin (7.5 mg CP/kg b.m., i.p.) and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p.) alone or in combination. The results suggest that CP intoxication induces oxidative stress and alters the glutathione redox status: reduced glutathione (GSH), oxidized glutathione (GSSG) and the GSH/GSSG ratio (GSH RI), resulting in increased lipid peroxidation (LPO) in rat liver. The pretreatment with selenium prior to CP treatment showed a protective effect against the toxic influence of CP on peroxidation of the membrane lipids and an altering of the glutathione redox status in the liver of rats. From our results we conclude that selenium functions as a potent antioxidant and suggest that it can control CP-induced hepatotoxicity in rats.


Author(s):  
Adetutu Olubunmi Obulor ◽  
Eme Efioanwan Orlu

Aim: The aim of the study is to evaluate the Protective role of Lycopene on hormonal profile and posttesticular functions of male rats exposed to sublethal doses of Cypermethrin. Study Design: The study was a completely randomized design employing relevant statistical tools for analysis and interpretation. Place and Duration of Study: The study was carried out in the Reproductive Physiology and Genetics Research Laboratory of the Department of Applied and Environmental Biology, Rivers State University, Rivers State. The experiment lasted for 35 days. Methodology: For the sperm morphology assay, sperm reserves and hormonal profiling, semen samples were drawn from the caudal epididymis with a syringe and placed on a clean glass slide. A drop of freshly prepared eosin-Y was added to make a thin smear and examined under the microscope for morphological abnormalities. A portion of the testis and epididymidis was homogenized separately with sharp pointed scissors in normal (physiological) saline. The suspension was mixed and strained through a double layer of sterile cheese cloth into graduated test tubes. All the samples were covered and stored for 24 hours at 40C. A dilution was made for counting in Neubauer haemocytometer. The hormonal concentration was determined using the Randox Monza Laboratories assay kit from Co-Atrim, United Kingdom.  Results: Results of oral administration of Cypermethrin and co-administration of lycopene in rats showed Group G co-administered pure Lycopene had the lowest sperm head abnormalities of 3.5%, group B administered Cypermethrin only had the highest head abnormalities of 44.7%. Similarly, Group G, co-administered pure Lycopene had the lowest percentage of tail abnormalities of 10.1%  while Group B had the highest percentage of sperm tail abnormalities of 32.4%. There was a was significant (p<0.001) decrease in concentration of all androgens considered in group B administered Cypermethrin only. Conclusion: Exposure to Cypermethrin only as in group B disrupted the production of all androgens considered, increased the percentage of abnormal spermatozoa, reduced sperm motility, viability and sperm reserves. However, results recorded from the co-administration of Solanum lycopersicum and pure lycopene, in groups C-G indicate the protective role of this potent antioxidant on spermatogenesis and hormonal profile.


2014 ◽  
Vol 38 (3) ◽  
pp. 774-782 ◽  
Author(s):  
Merve Bacanlı ◽  
Sevtap Aydın ◽  
Gökçe Taner ◽  
Hatice Gül Göktaş ◽  
Tolga Şahin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document