The Protective Role of Curcumin and Melatonin in Amelioration of Cadmium- Induced Cardiac Toxicity in Adult Albino Rats

2016 ◽  
Vol 26 (1) ◽  
pp. 161-170
Author(s):  
Hoda Salah Eldin ◽  
Rabab Hafez
2014 ◽  
Vol 38 (3) ◽  
pp. 774-782 ◽  
Author(s):  
Merve Bacanlı ◽  
Sevtap Aydın ◽  
Gökçe Taner ◽  
Hatice Gül Göktaş ◽  
Tolga Şahin ◽  
...  

2011 ◽  
Vol 31 (6) ◽  
pp. 565-573 ◽  
Author(s):  
M Tutanc ◽  
V Arica ◽  
N Yılmaz ◽  
A Nacar ◽  
I Zararsiz ◽  
...  

Aim: In cyclosporin-A (CsA)-induced toxicity, oxidative stress has been implicated as a potential responsible mechanism. Therefore, we aimed to investigate the protective role of erdosteine against CsA-induced nephrotoxicity in terms of tissue oxidant/antioxidant parameters and light microscopy in rats. Materials and methods: Wistar albino rats were randomly separated into four groups. Group 1 rats treated with sodium chloride served as the control, group 2 rats were treated with CsA, group 3 with CsA plus erdosteine, and group 4 with erdosteine alone. Animals were killed and blood samples were analyzed for blood urea nitrogen (BUN), serum creatinine (Cr), uric acid (UA), total protein (TP), and albumin (ALB) levels. Kidney sections were analyzed for malondialdehyde (MDA) and nitric oxide (NO) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, as well as for histopathological changes. Results: In the CsA group, MDA, GSH-Px, BUN, and Cr levels were increased. The TP and ALB levels were decreased. These changes had been improved by erdosteine administration. Other biochemical parameters did not show any significant change. Conclusion: These results indicate that erdosteine produces a protective mechanism against CsA-induced nephrotoxicity and suggest a role of oxidative stress in pathogenesis.


2019 ◽  
Vol 1 (4) ◽  
pp. 13-28
Author(s):  
Abdelmonem Awad Hegazy ◽  
Manal Mohammad Morsy ◽  
Rania Said Moawad ◽  
Gehad Mohammad Elsayed

Background Hypothyroidism is a metabolic disorder affecting the functions of many tissues in the body including the testis. Testis is rich in the polyunsaturated fatty acids content and lacks strong intrinsic antioxidant system making it prone to such oxidative stress. L-carnitine (LC) regulates long chain fatty acids metabolism; and is considered a valuable antioxidant factor. Aim It was to evaluate the effect of hypothyroidism induced by propylthiouracil (PTU) on rats’ testes and the possible protective role of LC. Methods Forty-eight adult male albino rats were used in this work. The animals were divided into three groups with sixteen animals in each. Group 1 (Control): Animals were kept without medications. Group 2 (PTU-treated): was subjected to administration of PTU; while group 3 (PTU and LC) received both PTU and LC. By the end of the experiment “30 days”, blood samples were taken for hormonal assay; then animals were anaesthetized and sacrificed. Specimens were homogenized for biochemical analysis; epididymal content of each rat was obtained immediately for semen analysis. Testes’ specimens were harvested, prepared and examined by light microscope examination. Results Induced hypothyroidism was noticed to cause histopathological, morphometric and biochemical changes in rat’s testes. LC protected the testicular specimens against such changes; it also improved the seminal quality and quantity as well as testicular structure and biochemistry. Conclusion Hypothyroidism could result in hazards to the structure of testis. Fortunately co-administration of LC might reduce such hazards.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2633 ◽  
Author(s):  
Atef M.K. Nassar ◽  
Yehia M.M. Salim ◽  
Khalid S.A. Eid ◽  
Hazem M. Shaheen ◽  
Abdullah A. Saati ◽  
...  

Sumithion (Fenitrothion) (SUM) is an organophosphorus insecticide used to combat a wide variety of plant pests. Exposure to SUM causes significant toxicity to the brain, liver, kidney, and reproductive organs through, for example, binding to DNA, and it induces DNA damage, which ends with oxidative stress. Therefore, the present study aimed to examine the protective role of bee products: a mixture of honey, propolis, palm pollen, and royal jelly (HPPJ) against SUM-induced toxicity. Twenty-four male albino rats (Rattus norvegicus) were classified into four groups, each containing six rats: control (corn oil), SUM (85 mg/kg; 1/20 LD50), HPPJ, and SUM + HPPJ once daily for 28 consecutive days. Blood samples were gently collected in sterilized ethylenediaminetetraacetic acid (EDTA) tubes for blood picture analyses and tubes without anticoagulant for serum isolation. Serum was used for assays of enzymatic and biochemical characteristics. The results revealed that SUM increased the weights of the liver, kidney, and brain as well as the enzymatic activity of glutathione peroxidase (GP), serum superoxide dismutase (SOD), and glutathione-S-transferase (GST). Additionally, SUM significantly increased the activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and γ-glutamyltransferase (γ-GT) and glucose, uric acid, and creatinine contents, while decreasing the acetylcholine esterase (AChE) activity and total lipids and total protein content. Furthermore, because of the inclusion of phenolic, flavonoids, terpenoids, and sugars, the HPPJ mixture counteracted the hematological, renal, and hepatic toxicity of SUM exposure.


Sign in / Sign up

Export Citation Format

Share Document